zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Accelerating the convergence of the diagonalization and projection algorithms for finite-dimensional variational inequalities. (English) Zbl 0825.49019

49J40Variational methods including variational inequalities
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
Full Text: DOI
[1] B.H. Ahn,Computation of Market Equilibria for Policy Analysis: The Project Independence Evaluation Study (PIES) (Garland, New York, NY, 1979).
[2] D.P. Bertsekas and E.M. Gafni, ”Projection methods for variational inequalities with application to the traffic assignment problem,”Mathematical Programming Study 16 (1982) 139--159. · Zbl 0478.90071
[3] J. Bisschop and A. Meeraus, ”On the development of general algebraic modeling systems in a strategic planning environment,”Mathematical Programming Study 20 (1982) 1--29.
[4] S. Dafermos, ”Traffic equilibrium and variational inequalities,”Transportation Science 14 (1980) 42--54. · doi:10.1287/trsc.14.1.42
[5] S. Dafermos, ”An iterative method for variational inequalities,”Mathematical Programming 26 (1983) 40--47. · Zbl 0506.65026 · doi:10.1007/BF02591891
[6] T.L. Friesz, R.L. Tobin and P.T. Harker, ”Variational inequalities and convergence of diagonalization methods for derived demand network equilibrium problems,” Working Paper CUE-FNEM-1981--10-1, Department of Civil Engineering, University of Pennsylvania, 1981.
[7] T.L. Friesz, R.L. Tobin, T.E. Smith and P.T. Harker, ”A nonlinear complementarity formulation and solution procedure for the general derived demand network equilibrium problem,”Journal of Regional Science 23 (1983) 337--359. · doi:10.1111/j.1467-9787.1983.tb00994.x
[8] D. Gabay and H. Moulin, ”On the uniqueness and stability of Nash-equilibria in noncooperative games,” in: A. Bensoussan, P. Kleindorfer and C.S. Taperio, eds.,Applied Stochastic Control in Econometrics and Management Science (North-Holland, Amsterdam, 1980). · Zbl 0461.90085
[9] R. Glowinski, J.L. Lions and R. Tremolieres,Analyse Numerique des Inequations Variationelles, Methodes Mathematiques de l’Informatique (Bordas, Paris, 1976).
[10] J.H. Hammond, ”Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming,” Ph.D. dissertation, Department of Mathematics, MIT, Cambridge, MA, 1984.
[11] J.H. Hammond and T.L. Magnanti, ”Generalized descent methods for asymmetric systems of equations and variational inequalities,” Working Paper OR 137-85, Operations Research Center, M.I.T., Cambridge, MA, 1985.
[12] P.T. Harker, ”A variational inequality approach for the determination of oligopolistic market equilibrium,”Mathematical Programming 30 (1984) 105--111. · Zbl 0559.90015 · doi:10.1007/BF02591802
[13] P.T. Harker, ”Alternative models of spatial competition,”Operations Research 34 (1986) 410--425. · Zbl 0602.90018 · doi:10.1287/opre.34.3.410
[14] P.T. Harker and T.L. Friesz, ”Prediction of intercity freight flows, I: theory and II: mathematical formulations,”Transportation Research 20B (1986) 139--153 and 155--174. · doi:10.1016/0191-2615(86)90004-4
[15] F.H. Murphy, H.D. Sherali and A.L. Soyster, ”A mathematical programming approach for determining oligopolistic market equilibrium,”Mathematical Programming 24 (1982) 92--106. · Zbl 0486.90015 · doi:10.1007/BF01585096
[16] J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970). · Zbl 0241.65046
[17] J.-S. Pang, ”Solution of the general multicommodity spatial equilibrium problem by variational and complementarity problems,”Journal of Regional Science 24 (1984) 403--414. · doi:10.1111/j.1467-9787.1984.tb00811.x
[18] J.-S. Pang and D. Chan, ”Iterative methods for variational and complementarity problems,”Mathematical Programming 24 (1982) 284--313. · Zbl 0499.90074 · doi:10.1007/BF01585112