×

zbMATH — the first resource for mathematics

The ACT (STATIS method). (English) Zbl 0825.62009
Summary: ACT (STATIS method) is a data analysis technique which computes Euclidean distances between configurations of the same observations obtained in \(K\) different circumstances, and thus handles three-way data as a set of \(K\) matrices. The recent developments of the ACT technique are fully described - concepts and theorems related to Euclidean scaling being discussed in the appendix - and the software manipulation is illustrated on real data.

MSC:
62-07 Data analysis (statistics) (MSC2010)
15A03 Vector spaces, linear dependence, rank, lineability
15A18 Eigenvalues, singular values, and eigenvectors
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Carlier, A.; Lavit, Ch.; Pages, M.; Pernin, M. O.; Turlot, J. Ch.: A comparative review of methods which handle a set of indexed data tables. Multiway data analysis, 85-101 (1989)
[2] Escoufier, Y.: Le traitement des variables vectorielles. Biometrics 29, 751-760 (1973)
[3] Escoufier, Y.: Operators related to a data matrix. Recent developments in statistics, 125-131 (1977) · Zbl 0367.62078
[4] Fichet, B.; Le Calve, G.: Structure géométrique des principaux indices de dissimilarité sur sugnes de présence–absence. Statistique et analyse de données 9, No. 3, 11-44 (1984) · Zbl 0579.62045
[5] Franc, A.: Etude algébrique des multi-tableaux. Apports de l’algèbre tensorielle. Doctoral thesis (1992)
[6] Lavit, Ch.: Analyse conjointe de tableaux quantitatifs. (1988)
[7] Rao, C. R.: Linear statistical inference and its applications. (1973) · Zbl 0256.62002
[8] Rao, C. R.: Matrix approximations and reduction of dimensionality in multivariate statistical analysis. Multivariate analysis, 3-22 (1980) · Zbl 0442.62042
[9] Robert, P.; Escoufier, Y.: A unifying tool for linear multivariate statistical methods: the RV coefficient. Applied statistics C 25, No. 3, 257-265 (1976)
[10] Sabatier, R.: Méthodes factorielles en analyse des données. Doctoral thesis (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.