×

Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. (English) Zbl 0825.73960


MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74H45 Vibrations in dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1978. · doi:10.1007/978-1-4757-1693-1
[2] and , ’How to make your algorithm conservative’, Not. Amer. Math. Soc., A.594-A.595 (1975).
[3] Belytschko, J. Appl. Mech. Asme 42 pp 865– (1975) · doi:10.1115/1.3423721
[4] ’Sympletic integration algorithms’, Report AT-6: ATN-83-9. Los Alamos National Laboratory, 1983.
[5] and , ’Symplectic integration of Hamiltonian systems’, Preprint, 1988.
[6] Matrix Groups, 2nd edn, Springer-Verlag, Berlin, 1984. · doi:10.1007/978-1-4612-5286-3
[7] ’Methods of integration which preserve the contact transformation property of Hamiltonian equations’, Report 4, Department of Mathematics, University of Notre Dame, 1956.
[8] Kang, J. Comp. Math. 4 pp 279– (1986)
[9] Classical Mechanics, 2nd edn, Addison-Wesley, Reading, MA, 1980.
[10] Greenspan, J. Comp. Phys. 56 pp 28– (1984)
[11] Spacecraft Attitude Dynamics, Wiley, New York, 1986.
[12] Hughes, Comp. Struct. 6 pp 313– (1976)
[13] The Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1987.
[14] Hughes, J. Appl. Mech. Asme 45 pp 366– (1978) · Zbl 0392.73075 · doi:10.1115/1.3424303
[15] ’Integration schemes for long term calculations’, in (ED.), Advances in Computer Methods for Partial Differential Equations II, I. M. A. C. S (AICA) 1977.
[16] LaBudde, Numer. Math. 25 pp 323– (1976)
[17] LaBudde, Numer. Math. 26 pp 1– (1976)
[18] Marsden, Phys. Lett. A
[19] Navon, Monthly Weather Rev. 109 pp 946– (1981)
[20] and , Difference Methods for Initial Value Problems, 2nd edn, Interscience, New York, 1967.
[21] Sasaki, J. Comp. Phys. 21 pp 270– (1976)
[22] Simo, Comp. Methods Appl. Mech. Eng. 49 pp 55– (1985)
[23] Simo, Comp. Methods Appl. Mech. Eng. 72 pp 267– (1989)
[24] Simo, Comp. Methods Appl. Mech. Eng. 66 pp 125– (1988)
[25] Simo, Arch. Rational Mech. Anal. 104 pp 125– (1989)
[26] Simo, Phys. Reports
[27] Introduction to Space Dynamics, Dover Publications, New York, 1986.
[28] Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, Berlin, 1983. · doi:10.1007/978-1-4757-1799-0
[29] A Treatise on Analytical Dynamics, Dover Publications, New York, 1944.
[30] Ge, Lett. Phys.
[31] Zienkiewicz, Earthquake Eng. Struct. Dyn. 8 pp 31– (1980)
[32] Spurrier, J. Spacecraft 15 pp 255– (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.