×

A dynamic subgrid-scale eddy viscosity model. (English) Zbl 0825.76334

Summary: One major drawback of the eddy viscosity subgrid-scale stress models used in large-eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid-scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid-scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near-wall region of a turbulent boundary layer. The results of large-eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[2] Lilly D. K., NCAR Manuscript pp 123– (1966)
[3] DOI: 10.1017/S0022112070000691 · Zbl 0191.25503 · doi:10.1017/S0022112070000691
[4] McMillan O. J., AIAA Paper pp 80– (1980)
[5] DOI: 10.1017/S0022112086002112 · Zbl 0582.76064 · doi:10.1017/S0022112086002112
[6] DOI: 10.1063/1.866635 · doi:10.1063/1.866635
[7] DOI: 10.1017/S0022112082001116 · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[8] DOI: 10.2514/8.3713 · doi:10.2514/8.3713
[9] DOI: 10.1007/BF01061499 · doi:10.1007/BF01061499
[10] DOI: 10.1007/BF01061452 · Zbl 0648.76040 · doi:10.1007/BF01061452
[11] DOI: 10.1063/1.857774 · doi:10.1063/1.857774
[12] DOI: 10.1016/0010-4655(91)90175-K · Zbl 0900.76079 · doi:10.1016/0010-4655(91)90175-K
[13] DOI: 10.1063/1.857956 · Zbl 0825.76335 · doi:10.1063/1.857956
[14] Germano M., CTR Manuscript pp 116– (1990)
[15] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.