×

A mixed formulation for frictional contact problems prone to Newton like solution methods. (English) Zbl 0825.76353

Summary: A mixed penalty-duality formulation of the frictional contact problem, inspired from an augmented Lagrangian approach is proposed. The continuity of the resulting conewise linear operator is used to establish a uniqueness condition on the coefficient of friction. Modified and generalized Newton methods are examined and sufficient conditions for their convergence conjectured. A cylindrical frictional contact problem assesses the stability of the method. Mixed penalty-duality methods are found more accurate and stabler than penalty methods and as economical as them.

MSC:

76F99 Turbulence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Curnier, A.; Alart, P., A generalized Newton method for contact problem with friction, Numerical Methods in Mechanics of Contact Involving Friction. Numerical Methods in Mechanics of Contact Involving Friction, J. Méc. Théor. Appl., 67-82 (1988), Special Issue · Zbl 0679.73046
[2] Hestenes, M., Multiplier and gradient method, J. Opt. Th. Appl., 4, 303-320 (1969) · Zbl 0174.20705
[3] Powell, B. T., A method for nonlinear constraints in minimization problems, (Fletcher, R., Optimization (1969), Academic Press: Academic Press London)
[4] Rockafellar, R. T., Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1, 2 (1976) · Zbl 0402.90076
[5] Fortin, M., Minimization of some non-differentiable functionals by the augmented Lagrangian method of Hestenes and Powell, Appl. Math. Optim., 2, 4, 236-250 (1976)
[6] Landers, J. A.; Taylor, R. L., An augmented Lagrangian formulation for the finite element solution of contact problems, (Rept. No. UCB/SESM-85/09 (1985), Department of Civil Engineering, University of California: Department of Civil Engineering, University of California Berkeley)
[7] Barthold, F. J.; Bischoff, D., Generalization of Newton type methods to contact problems with friction, Numerical Methods in Mechanics of Contact Involving Friction. Numerical Methods in Mechanics of Contact Involving Friction, J. Méc. Théor. Appl., 97-110 (1988), Special Issue · Zbl 0679.73047
[8] Moreau, J. J., Application of convex analysis to some problems of dry friction, (Zorski, Trends of Pure Mathematics Applied to Mechanics, Vol. II (1979)) · Zbl 0433.73096
[9] Wilkins, M. L., Calculation of elastic-plastic flow, (Alder, Berni; etal., Fundamental Methods in Hydrodynamics. Fundamental Methods in Hydrodynamics, Methods of Computational Physics, Vol. 3 (1964), Academic Press: Academic Press New York), 211-263
[10] Simo, J.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., 48, 101-118 (1985) · Zbl 0535.73025
[11] Jean, M., Un algorithme numérique simple pour un système d’oscillateurs avec frottement de Coulomb sur un plan, (Note Technique 85-2 (1985), Université des Sciences et Techniques du Languedoc, Lab. de Mécanique Générale et des Milieux Continus: Université des Sciences et Techniques du Languedoc, Lab. de Mécanique Générale et des Milieux Continus Montpellier)
[12] Curnier, A., TACT: A contact analysis program, (Piero-Maceri, Del, Proceedings of 3rd meeting on Unilateral Problems in Structural Analysis (1987)), 97-116 · Zbl 0825.73671
[13] Taylor, R.; Sackman, J.; Kanoknukulchai, W.; Curnier, A., A finite element formulation and solution of contact-impact problems in continuum mechanics, V, (Report 78-3, CE-SESM (1978), University of California: University of California Berkeley)
[14] Simo, C.; Wriggers, P.; Schweizerhof, N.; Taylor, R. L., Finite deformation post-buckling analysis involving inelasticity and contact constraints, Internat. J. Numer. Methods Engrg., 23, 779 (1986) · Zbl 0584.73045
[15] Duvaut, G.; Lions, J. L., Les inéquations en mécanique et en physique (1972), Dunod: Dunod Paris · Zbl 0298.73001
[16] Rockafellar, R. T., Lagrange multipliers and variational inequalities, (Gianessi; Cottle; Lions, Variational Inequalities and Complementarity Problems (1979), Wiley: Wiley New York) · Zbl 0491.49007
[17] I. Capuzzo, Dolcetta; Mosco, U., Implicit complementarity problems and quasi-variational inequalities, (Gianessi; Cottle; Lions, Variational Inequalities and Complementarity Problems (1979), Wiley: Wiley New York)
[18] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), Wiley: Wiley New York · Zbl 0727.90045
[19] Ekeland, I.; Temam, R., Analyse convexe et problèmes variationnels (1978), Dunod, Collection Etudes Mathématiques: Dunod, Collection Etudes Mathématiques Paris
[20] Alart, P.; Curnier, A., Contact discret avec frottement, document LMA-DME-EPFL (1987), Lausanne
[22] Zincenko, A. I., On a method for approximate solution of equations with nondifferentiable operators, Dop. Akad. Nank. Ukr. RSR, No. 2, 156-161 (1963)
[23] Alart, P., Multiplicateurs “augmentés” et méthode de Newton généralisée pour contact avec frottement, document LMA-DME-EPFL (1988), Lausanne
[24] Lemke, C. E., Bimatrix equilibrium points and mathematical programming, Management Sci., 4, 681-689 (1965) · Zbl 0139.13103
[25] Murty, K. G., Computational complexity pivot methods, Math. Prog. St., 7, 61-73 (1978) · Zbl 0381.90108
[26] Fathi, Y., Computational complexity of LCP’s associated with positive definite symmetric matrices, Math. Prog. St., 17, 335-344 (1979) · Zbl 0421.90072
[27] Persson, A., On the stress distribution of cylindrical elastic bodies in contact (1964), Chalmers University: Chalmers University Gothenburg
[28] Klang, M., On interior contact under friction between cylindrical elastic bodies, (Thesis (1979), Linköping University: Linköping University Linköping)
[29] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (1988), SIAM: SIAM Philadelphia, PA · Zbl 0685.73002
[30] Curnier, A., A theory of friction, Internat. J. Solids and Structures, 20, 7, 637-647 (1984) · Zbl 0543.73138
[31] Glowinski, R.; Le Tallec, P., Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics (1989), SIAM: SIAM Philadelphia, PA · Zbl 0698.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.