×

zbMATH — the first resource for mathematics

A kinetic model of the agglutination process. (English) Zbl 0825.92155
MSC:
92F05 Other natural sciences (mathematical treatment)
92C99 Physiological, cellular and medical topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Botet, R.; Jullien, R., Size distribution of clusters in irreversible kinetic aggregation, J. phys. A: math gen., 17, 2517-2530, (1984) · Zbl 1188.82015
[2] Drake, R.L., A general mathematical survey of the coagulation equation, (), 201-379, Part 2
[3] Feder, J.; Jossang, T.; Rosenqvist, E., Scaling behavior and cluster fractal dimension determined by light scattering from aggregating proteins, Phys. rev. lett., 53, 1403-1406, (1984)
[4] Karulin, A.Yu.; Dzantiev, B.B., Polyvalent interaction of antibodies with bacterial cells, Mol. immunol., 27, 956-971, (1990)
[5] Kolb, M.; Botet, R.; Jullien, R., Scaling of kinetically growing clusters, Phys. rev. lett., 51, 1123-1126, (1983)
[6] Meakin, P., Formation of fractal clusters and networks by irreversible diffusion-limited aggregation, Phys. rev. lett., 51, 1119-1122, (1983)
[7] Meaken, P.; Chen, Z.-Y.; Deutch, J.M., The translation friction coefficient and time dependent cluster size distribution of three dimensional cluster-cluster aggregation, J. chem. phys., 62, 3786-3789, (1985)
[8] Smoluchowski, M.V., Drei verträge über diffusion, brownsche bewegung und koagulation von kolloidteilchen, Physik. Z., 17, 557-585, (1916)
[9] Witten, T.A.; Sander, L.M., Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. rev. lett., 47, 1400-1403, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.