×

Practical stabilization of a class of nonlinear systems with partially known uncertainties. (English) Zbl 0825.93650

Summary: In this paper we deal with robust control of a class of nonlinear systems which contain uncertainties. It can be viewed as an extension of the work in [M. J. Corless and G. Leitmann, IEEE Trans. Autom. Control 26, 1139–1144 (1981; Zbl 0473.93056)] for the cases where the vector of uncertainties is only partially known. To cope with the uncertainties, an adaptive controller using a dead-zone and a hysteresis function is proposed and both the uniform boundedness of all the closed-loop signals and uniform ultimate boundedness of the system state are guaranteed. In contrast with some previous attempts to relax the a priori knowledge on the uncertainties bounds by using a discontinuous control law, we propose continuous control laws in this paper. Hence, chattering problems (which have practical importance) can be avoided.

MSC:

93D21 Adaptive or robust stabilization
93B51 Design techniques (robust design, computer-aided design, etc.)
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
93D30 Lyapunov and storage functions

Citations:

Zbl 0473.93056
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barmish, B. R.; Leitmann, G., On ultimate boundedness control of uncertain systems in the absence of matching assumptions, IEEE Trans. Autom. Control, AC-27, 153-158 (1982) · Zbl 0469.93043
[2] Barmish, B. R.; Petersen, I. R.; Feuer, A., Linear ultimate boundedness control of uncertain dynamical systems, Automatica, 19, 523-533 (1983) · Zbl 0525.93049
[3] Brogliato, B.; Neto, A. Trofino, Adaptive robust control of a class of nonlinear dynamic systems containing partially known uncertainties, (Proc. Am. Control Conf.. Proc. Am. Control Conf., Chicago, IL (1992)), 2559-2563
[4] Brogliato, B.; Trofino, A.; Lozano, R., Robust adaptive control of a class of nonlinear first order systems, Automatica, 28, 795-801 (1992) · Zbl 0765.93039
[5] Chen, Y. H., Adaptive robust control of uncertain systems with measurement noise, Automatica, 28, 715-728 (1992) · Zbl 0766.93045
[6] Chen, Y. H.; Leitmann, G., Robustness of uncertain systems in the absence of matching assumptions, Int. J. Control, 45, 1527-1542 (1987) · Zbl 0623.93023
[7] Corless, M., Control of uncertain nonlinear systems, ASME J. Dyn. Syst. Meas. Control, 115, 362-372 (1993) · Zbl 0775.93088
[8] Corless, M.; Leitmann, G., Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamical systems, IEEE Trans. Autom. Control, AC-26, 1139-1144 (1981) · Zbl 0473.93056
[9] Corless, M.; Leitmann, G., Adaptive control of systems containing uncertain functions and unknown functions with uncertain bounds, J. Optimiz. Theory Applic., 41, 155-168 (1983) · Zbl 0497.93028
[10] Dawson, D. M.; Genet, R.; Lewis, F. L., A hybrid adaptive learning controller for a robot manipulator, (Proc. Symp. Adaptive/Learning Control, 21 (1990)), 51-54
[11] Dawson, D. M.; Qu, Z.; Lewis, F. L., Hybrid adaptive robust control for a robot manipulator, Int. J. ACASP, 6, 537-545 (1992) · Zbl 0778.93079
[12] Filipov, A. C., (Differential Equations with Discontinuous Right Hand Sides (1988), Kluwer: Kluwer Dordrecht) · Zbl 0664.34001
[13] Freeman, R. A.; Kokotovic, P. V., Backstepping design of robust controllers for a class of nonlinear systems, ((1992), NOLCOS: NOLCOS Bordeaux, France), 307-312
[14] Fu, L. C., Robust adaptive decentralized control of robot manipulators, IEEE Trans. Autom. Control, AC-37, 106-110 (1992) · Zbl 0747.93048
[15] Grayson, L. P., Design via Lyapunov’s second method, (Proc. 4th Joint Conf. on Autom. Control (1963)), 589-595
[16] Hsu, L.; Costa, R., Bursting phenomena in continuous time adaptive systems with σ-modification, IEEE Trans. Autom. Control, AC-32, 84-86 (1987) · Zbl 0614.93042
[17] Ioannou, P. A.; Kokotovic, P. V., Instability analysis and improvement of robustness of adaptive control, Automatica, 20, 583-594 (1984) · Zbl 0548.93050
[18] Johnson, G. W., Synthesis of control systems with stability constraints via the direct method of Lyapunov, IEEE Trans. Autom. Control, AC-9, 270-273 (1964)
[19] Khalil, H. K., (Nonlinear Systems (1992), MacMillan: MacMillan New York) · Zbl 0969.34001
[20] Leitmann, G., On one approach to the control of uncertain systems, ASME J. Dyn. Syst. Meas. Control, 115, 372-382 (1993) · Zbl 0775.93088
[21] Leung, T. P.; Zhou, Q. J.; Su, C. Y., An adaptive variable structure model following control design for robot manipulators, IEEE Trans. Autom. Control, AC-36, 347-352 (1991) · Zbl 0737.93051
[22] Liao, T. L.; Fu, L. C.; Hsu, C. F., Adaptive robust tracking of nonlinear systems and with an application to robotic manipulators, Syst. Control Lett., 15, 339-348 (1990) · Zbl 0724.93048
[23] Marino, R.; Tomei, P., Self-tuning stabilization of feedback linearizable systems, (Proc. Int. Symp. on Adapt. Syst. Sign. Process. Proc. Int. Symp. on Adapt. Syst. Sign. Process, Grenoble (1992)), 9-14
[24] Massera, J. L., Contributions to stability theory, Ann. Math., 64, 182-206 (1956) · Zbl 0070.31003
[25] Monopoli, R. V., Synthesis techniques employing the direct method, IEEE Trans. Autom. Control, AC-10, 369-370 (1965)
[26] Monopoli, R. V., Discussion on “two theorems on the second method, IEEE Trans. Autom. Control, AC-11, 140-141 (1966)
[27] Peterson, B. B.; Narendra, K. S., Bounded error adaptive control, IEEE Trans. Autom. Control, AC-27, 1161-1168 (1982) · Zbl 0497.93026
[28] Qu, Z.; Dorsey, J. F.; Zhang, X.; Dawson, D. M., Robust control of robots by the computed torque law, Syst. Control Lett., 16, 25-32 (1991) · Zbl 0737.93052
[29] Ryan, E. P.; Corless, M., Ultimate boundedness and asymptotic stability of a class of uncertain dynamical systems via continuous and discontinuous feedback control, IMA J. Math. Control Inform., 1, 223-242 (1984) · Zbl 0662.93059
[30] Singh, S. N., Adaptive model following control of nonlinear robotic systems, IEEE Trans. Autom. Control, AC-30, 1099-1100 (1985) · Zbl 0569.93052
[31] Slotine, J. J.; Li, W., Adaptive manipulator control: a case study, IEEE Trans. Autom. Control, AC-33, 995-1003 (1988) · Zbl 0664.93045
[32] Sontag, E., (Mathematical Control Theory: Determinstic Finite Dimensional Systems (1990), Springer: Springer Berlin) · Zbl 0703.93001
[33] Spong, M. W., On the robust control of robot manipulators, IEEE Trans. Autom. Control, AC-37, 1782-1786 (1992) · Zbl 0778.93082
[34] Spong, M. W.; Vidyasagar, M., (Robot Dynamics and Control (1989), Wiley: Wiley New York)
[35] Yoo, D. S.; Chung, M. S., A variable structure control with simple adaptation laws for upperbounds on the norm of the uncertainties, IEEE Trans. Autom. Control, AC-37 (1992) · Zbl 0760.93014
[36] (Zinober, A. S.I., Deterministic control of uncertain systems. Deterministic control of uncertain systems, IEEE Control Engng Series, 40 (1990)) · Zbl 0754.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.