zbMATH — the first resource for mathematics

Practical stabilization of a class of nonlinear systems with partially known uncertainties. (English) Zbl 0825.93650
Summary: In this paper we deal with robust control of a class of nonlinear systems which contain uncertainties. It can be viewed as an extension of the work in [M. J. Corless and G. Leitmann, IEEE Trans. Autom. Control 26, 1139–1144 (1981; Zbl 0473.93056)] for the cases where the vector of uncertainties is only partially known. To cope with the uncertainties, an adaptive controller using a dead-zone and a hysteresis function is proposed and both the uniform boundedness of all the closed-loop signals and uniform ultimate boundedness of the system state are guaranteed. In contrast with some previous attempts to relax the a priori knowledge on the uncertainties bounds by using a discontinuous control law, we propose continuous control laws in this paper. Hence, chattering problems (which have practical importance) can be avoided.

93D21 Adaptive or robust stabilization
93B51 Design techniques (robust design, computer-aided design, etc.)
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
93D30 Lyapunov and storage functions
Full Text: DOI
[1] Barmish, B.R.; Leitmann, G., On ultimate boundedness control of uncertain systems in the absence of matching assumptions, IEEE trans. autom. control, AC-27, 153-158, (1982) · Zbl 0469.93043
[2] Barmish, B.R.; Petersen, I.R.; Feuer, A., Linear ultimate boundedness control of uncertain dynamical systems, Automatica, 19, 523-533, (1983) · Zbl 0525.93049
[3] Brogliato, B.; Neto, A.Trofino, Adaptive robust control of a class of nonlinear dynamic systems containing partially known uncertainties, (), 2559-2563
[4] Brogliato, B.; Trofino, A.; Lozano, R., Robust adaptive control of a class of nonlinear first order systems, Automatica, 28, 795-801, (1992) · Zbl 0765.93039
[5] Chen, Y.H., Adaptive robust control of uncertain systems with measurement noise, Automatica, 28, 715-728, (1992) · Zbl 0766.93045
[6] Chen, Y.H.; Leitmann, G., Robustness of uncertain systems in the absence of matching assumptions, Int. J. control, 45, 1527-1542, (1987) · Zbl 0623.93023
[7] Corless, M., Control of uncertain nonlinear systems, ASME J. dyn. syst. meas. control, 115, 362-372, (1993) · Zbl 0775.93088
[8] Corless, M.; Leitmann, G., Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamical systems, IEEE trans. autom. control, AC-26, 1139-1144, (1981) · Zbl 0473.93056
[9] Corless, M.; Leitmann, G., Adaptive control of systems containing uncertain functions and unknown functions with uncertain bounds, J. optimiz. theory applic., 41, 155-168, (1983) · Zbl 0497.93028
[10] Dawson, D.M.; Genet, R.; Lewis, F.L., A hybrid adaptive learning controller for a robot manipulator, (), 51-54
[11] Dawson, D.M.; Qu, Z.; Lewis, F.L., Hybrid adaptive robust control for a robot manipulator, Int. J. ACASP, 6, 537-545, (1992) · Zbl 0778.93079
[12] Filipov, A.C., ()
[13] Freeman, R.A.; Kokotovic, P.V., Backstepping design of robust controllers for a class of nonlinear systems, (), 307-312
[14] Fu, L.C., Robust adaptive decentralized control of robot manipulators, IEEE trans. autom. control, AC-37, 106-110, (1992)
[15] Grayson, L.P., Design via Lyapunov’s second method, (), 589-595
[16] Hsu, L.; Costa, R., Bursting phenomena in continuous time adaptive systems with σ-modification, IEEE trans. autom. control, AC-32, 84-86, (1987) · Zbl 0614.93042
[17] Ioannou, P.A.; Kokotovic, P.V., Instability analysis and improvement of robustness of adaptive control, Automatica, 20, 583-594, (1984) · Zbl 0548.93050
[18] Johnson, G.W., Synthesis of control systems with stability constraints via the direct method of Lyapunov, IEEE trans. autom. control, AC-9, 270-273, (1964)
[19] Khalil, H.K., ()
[20] Leitmann, G., On one approach to the control of uncertain systems, ASME J. dyn. syst. meas. control, 115, 372-382, (1993)
[21] Leung, T.P.; Zhou, Q.J.; Su, C.Y., An adaptive variable structure model following control design for robot manipulators, IEEE trans. autom. control, AC-36, 347-352, (1991)
[22] Liao, T.L.; Fu, L.C.; Hsu, C.F., Adaptive robust tracking of nonlinear systems and with an application to robotic manipulators, Syst. control lett., 15, 339-348, (1990) · Zbl 0724.93048
[23] Marino, R.; Tomei, P., Self-tuning stabilization of feedback linearizable systems, (), 9-14
[24] Massera, J.L., Contributions to stability theory, Ann. math., 64, 182-206, (1956) · Zbl 0070.31003
[25] Monopoli, R.V., Synthesis techniques employing the direct method, IEEE trans. autom. control, AC-10, 369-370, (1965)
[26] Monopoli, R.V., Discussion on “two theorems on the second method, IEEE trans. autom. control, AC-11, 140-141, (1966)
[27] Peterson, B.B.; Narendra, K.S., Bounded error adaptive control, IEEE trans. autom. control, AC-27, 1161-1168, (1982) · Zbl 0497.93026
[28] Qu, Z.; Dorsey, J.F.; Zhang, X.; Dawson, D.M., Robust control of robots by the computed torque law, Syst. control lett., 16, 25-32, (1991) · Zbl 0737.93052
[29] Ryan, E.P.; Corless, M., Ultimate boundedness and asymptotic stability of a class of uncertain dynamical systems via continuous and discontinuous feedback control, IMA J. math. control inform., 1, 223-242, (1984) · Zbl 0662.93059
[30] Singh, S.N., Adaptive model following control of nonlinear robotic systems, IEEE trans. autom. control, AC-30, 1099-1100, (1985) · Zbl 0569.93052
[31] Slotine, J.J.; Li, W., Adaptive manipulator control: a case study, IEEE trans. autom. control, AC-33, 995-1003, (1988) · Zbl 0664.93045
[32] Sontag, E., ()
[33] Spong, M.W., On the robust control of robot manipulators, IEEE trans. autom. control, AC-37, 1782-1786, (1992) · Zbl 0778.93082
[34] Spong, M.W.; Vidyasagar, M., ()
[35] Yoo, D.S.; Chung, M.S., A variable structure control with simple adaptation laws for upperbounds on the norm of the uncertainties, IEEE trans. autom. control, AC-37, (1992)
[36] ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.