[1] |
[F] Feigin, B.L.: The Lie algebrasgl({$\lambda$}) and the cohomology of the Lie algebra of differential operators. Usp. Math. Nauk35, No. 2, 157--158 (1988) · Zbl 0653.17009 |

[2] |
[FL] Luk’yanov, S.L., Fateev, V.A.: Conformally invariant models of two-dimensional quantum field theory withZ n symmetry. Zh. Esp. Theor. Fiz.94, No. 3, 23--37 (1988) |

[3] |
[FFZ] Fairlie, D., Fletcher, P., Zachos, C.: Phys. Lett.218B, 203 (1989) |

[4] |
[GL] Golenishcheva-Kutuzova, M., Lebedev, D.: Vertex operator representation of some quantum tori Lie algebras. Commun. Math. Phys.148, 403--416 (1992) · Zbl 0766.17021
· doi:10.1007/BF02100868 |

[5] |
[K] Kac, V.G.: Infinite-dimensional Lie algebras. 3-d edition, Cambridge: Cambridge University Press, 1990 |

[6] |
[KP] Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA78, 3308--3312 (1981) · Zbl 0469.22016
· doi:10.1073/pnas.78.6.3308 |

[7] |
[KhZ] Khesin, B., Zakharevich, I.: Poisson-Lie group of pseudodifferential symbols and fractional KP-KdV hiearchies. C.R. Acad. Sci. Paris,t. 316, Serie 1, 621--626 (1993) · Zbl 0771.35056 |

[8] |
[Li] Li, W.L.: 2-cocycles on the algebra of differential operators. J. Algebra122, 64--80 (1989) · Zbl 0671.17010
· doi:10.1016/0021-8693(89)90237-8 |

[9] |
[PSR] Pope, C.N., Shen, X., Romans, L.J.:W and the Racah-Wigner Algebra. Nucl. Phys.339B, 191--122 (1990)
· doi:10.1016/0550-3213(90)90539-P |

[10] |
[R] Radul, A.O.: Lie algebras of differential operators, their central extensions andW-algebras. Funct. Anal. Appl.25, No. 1, 86--91 (1991) · Zbl 0809.47044
· doi:10.1007/BF01090674 |

[11] |
[RV] Radul, A.O., Vaysburd, I.: Differential operators andW-algebras. Phys. Lett.274B, 317--322 (1992) |

[12] |
[Z] Zamolodchikov, A.B.: Infinite additional symmetries in 2-dimensional conformal quantum field theory. Teor. Mat. Phys.65, 1205--1213 (1985)
· doi:10.1007/BF01036128 |