Irreducible modular representations of GL\(_ 2\) of a local field. (English) Zbl 0826.22019

Let \(F\) be a local field such that the characteristic of its residue field is nonzero, and let \(G = \text{GL}_2 (F)\). The authors give a classification of smooth irreducible representations of the group \(G\) by studying certain universal objects.


22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields
20G05 Representation theory for linear algebraic groups
20G25 Linear algebraic groups over local fields and their integers
Full Text: DOI


[1] L. Barthel and R. Livné, Modular representations of \(\mathrmGL_2\) of a local field: the ordinary, unramified case , to appear in J. Number Theory. · Zbl 0841.11026
[2] I. N. Bernšteĭ n and A. V. Zelevinskiĭ, Representations of the group \(GL(n,F),\) where \(F\) is a local non-Archimedean field , Uspehi Mat. Nauk 31 (1976), no. 3(189), 5-70. · Zbl 0342.43017
[3] J.-P. Serre, Linear representations of finite groups , Springer-Verlag, New York, 1977. · Zbl 0355.20006
[4] J.-P. Serre, Arbres, amalgames, \(\mathrm SL_2\) , Astérisque, vol. 46, Société Mathématique de France, Paris, 1977. · Zbl 0369.20013
[5] B. Srinivasan, On the modular characters of the special linear group \(SL(2,\,p\spn)\) , Proc. London Math. Soc. (3) 14 (1964), 101-114. · Zbl 0118.03803
[6] J. Teitelbaum, Modular representations of \(\mathrm PGL_ 2\) and automorphic forms for Shimura curves , Invent. Math. 113 (1993), no. 3, 561-580. · Zbl 0806.11027
[7] M.-F. Vignéras, Représentations modulaires de \(\mathrm GL(2,F)\) en caractéristique \(l,\;F\) corps \(p\)-adique, \(p\neq l\) , Compositio Math. 72 (1989), no. 1, 33-66. · Zbl 0706.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.