Résurgence paramétrique et exponentielle petitesse de l’écart des séparatrices du pendule rapidement forcé. (Parametric resurgence and exponential smallness of the splitting of the separatrices of the rapidly forced pendulum.). (French) Zbl 0826.30004

Summary: Henri Poincaré had already noticed that the stable and unstable manifolds of the perturbed pendulum defined by the Hamiltonian \[ H(q,p,t)=p^2/ 2+(-1+\text{cos} q)(1- \mu \text{sin}(t/\varepsilon)), \] do not coincide when parameter \(\mu\) is not equal to zero, and that the same formal divergent series in powers of \(\varepsilon\) may be associated with both of them. Here this divergence is analyzed by means of the recent theory of resurgence and alien calculus which allows to estimate asymptotically the size of the splitting of the manifolds as \(\varepsilon\) tends to zero - at least this is proven for the simplified problem where \(\text{sin}(t/\varepsilon)\) is replaced with \(e^{it/\varepsilon}\).


30B99 Series expansions of functions of one complex variable
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
40C99 General summability methods
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI Numdam EuDML


[1] [P] , Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1893. · JFM 25.1847.03
[2] [H] , A Multiplier Theorem for Schrödinger operators, Colloquium Math., LX/LXI (1990), 659-664. · Zbl 0779.35025
[3] [KES] , and , Transcendentally Small Transversality on the Rapidly Forced Pendulum, Preprint (1992), 40 p. · Zbl 0782.34052
[4] [DS] and , An Asymptotic Expression for the Splitting of Separatrices of the Rapidly Forced Pendulum, Commun. Math. Phys., 150 (1992), 433-463. · Zbl 0765.70016
[5] [E1] , Les fonctions résurgentes, vol. 3, L’équation du pont et la classification analytique des objets locaux, Publ. Math. Université Paris-Sud, Orsay, 1985. · Zbl 0602.30029
[6] [E1’] , Singularités non abordables par la géométrie, Ann. Inst. Fourier, Grenoble, 42, 1-2 (1992), 73-164. · Zbl 0940.32013
[7] [E2] , Weighted products and parametric resurgence, Prépub. Math., 54, Université Paris-Sud, Orsay (1992), 43 p., à paraître dans Proc. Franco-Japanese Colloq. on Stokes Phenomena (Luminy, Déc. 1990), Boutet de Monvel ed., Lectures Notes in Math., Springer-Verlag. · Zbl 0834.34067
[8] [L1] , Exponential splitting of separatrices and an analytical integral for the semistandard map, Prépub. Math., 7, Université Paris 7 (1991), 53 p.
[9] [L2] , Resurgence of the separatrices of the semistandard map, Preprint Forschungsinstitut für Mathematik, ETH, Zürich (1991), 14 p.
[10] [T] , An averaging method for Hamiltonian systems, exponentially close to integrable ones, Preprint Moscow State University (1993), 23 p.
[11] [S] , Résurgence paramétrique et exponentielle petitesse de l’écart des séparatrices du pendule rapidement forcé, Thèse de doctorat à l’Université Paris 7 Denis Diderot.
[12] [CNP] , et , Approche de la résurgence, Actualités Math. Hermann, Paris, 1993. · Zbl 0791.32001
[13] [V] , The return of the quartic oscillator - The complex WKB method, Ann. Inst. Henri Poincaré, 39, n° 3 (1983), 211-338. · Zbl 0526.34046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.