Isoperimetry, decrease of the heat kernel and Riesz transformations: A counterexample. (Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz: Un contre-exemple.) (French) Zbl 0826.53035

Let \(M\) be a complete, noncompact Riemannian manifold. If \(A \subset M\) is a compact subset with a regular boundary then the isoperimetric inequality \(|A|^{(N - 1)/N} \leq C |\partial A|\) implies \(\sup_{x, y \in M} p_t(x,y) \leq C' t^{-N/2}\), \(t > 0\), where \(p_t\) is a heat kernel on \(M\) [cf. N. Th. Varopoulos, C. R. Acad. Sci., Paris, Sér. I 299, 651-654 (1984; Zbl 0566.31006)]. A partial converse to the above theorem was given by N. Th. Varopoulos in [Bull. Sci. Math., II. Sér. 113, No. 3, 253-277 (1989; Zbl 0703.58052)]: if \(M\) has a bounded geometry and \(\sup_{x, y \in M} p_t (x,y) = O(t^{-N/2})\), \(t \to +\infty\) then \(|A|^{(N' - 1)/N'} \leq C|\partial A|\) if \(\dim M \leq N' \leq N/2\). In the present paper the authors show that the assumption \(N' \leq N/2\) can not be replaced by \(N' \leq N\), namely they prove:
For each integer \(N \geq 3\) and for each real number \(N' > N/2\) there exists a Riemannian manifold \(M\) of dimension \(N\) with bounded sectional curvature and with positive injectivity radius such that: i) \(\sup_{x,y \in M} p_t(x,y) = O(t^{-N/2})\), \(t \to +\infty\), where \(p_t\) is a heat kernel on \(M\). ii) The isoperimetric inequality \(|A|^{(N' - 1)/N'} \leq C |\partial A|\) does not hold for any \(C\) where \(A \subset M\) is a compact subset with regular boundary and contains a ball of fixed radius.
Reviewer: W.Mozgawa (Lublin)


53C20 Global Riemannian geometry, including pinching
58J35 Heat and other parabolic equation methods for PDEs on manifolds
Full Text: DOI


[1] Bakry, D., Transformations de Riesz pour les semi-groupes symétriques, dansSéminaire de Probabilités XIX (Azéma, J. et Yor, M., eds.), Lecture Notes in Math.1123, pp. 130–175, Springer-Verlag, Berlin-Heidelberg, 1985.
[2] Bakry, D., Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, dansSéminaire de Probabilités XXI (Azéma, J., Meyer, P. A. et Yor, M., eds.), Lecture Notes in Math.1247, pp. 137–172, Springer-Verlag, Berlin-Heidelberg, 1987.
[3] Bishop, R. etO’Neill, B., Manifolds of negative curvature,Trans. Amer. Math. Soc. 145 (1969), 1–49. · Zbl 0191.52002
[4] Chavel, I. etFeldman, E., Isoperimetric constants, the geometry of ends, and large time heat diffusion in Riemannian manifolds,Proc. London Math. Soc. 62 (1991), 427–448. · Zbl 0723.58048
[5] Chavel, I. etFeldman, E., Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds,Duke Math. J. 64 (1991), 473–499. · Zbl 0753.58031
[6] Cheng, S., Li, P. etYau, S., On the upper estimate of the heat kernel on a complete Riemannian manifold,Amer. J. Math. 156 (1986), 153–201.
[7] Coulhon, T., Dimension à l’infini d’un semi-groupe analytique,Bull. Sci. Math. 114 (1990), 485–500. · Zbl 0738.47032
[8] Coulhon, T., Noyau de la chaleur et discrétisation d’une variété riemannienne,Israel J. Math. 80 (1992), 289–300. · Zbl 0772.58055
[9] Coulhon, T., Sobolev inequalities on graphs and on manifolds, dansHarmonic Analysis and Discrete Potential Theory (M. Picardello, ed.), pp. 207–214, Plenum, New York, 1992.
[10] Coulhon, T. etSaloff-Coste, L., Isopérimétrie pour les groupes et les variétés,Rev. Mat. Iberoamericana 9 (1993), 293–314. · Zbl 0782.53066
[11] Gerl, P., Sobolev inequalities and random walks, dansProbability Measures on Groups VIII (Heyer, H., ed.), Lecture Notes in Math.1210, pp. 84–96, Springer-Verlag, Berlin-Heidelberg, 1986.
[12] Kanai, M., Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds,J. Math. Soc. Japan 37 (1985), 391–413. · Zbl 0554.53030
[13] Kanai, M., Analytic inequalities, and rough isometries between non-compact Riemannian manifolds, dansCurvature and Topology of Riemannian Manifolds (Shiohama, K., Sakai, T. et Sunada, T., eds.), Lecture Notes in Math.1201, pp. 122–137, Springer-Verlag, Berlin-Heidelberg, 1986.
[14] Ledoux, M., A simple analytic proof of an inequality by P. Buser, à paraître dansProc. Amer. Math. Soc. · Zbl 0812.58093
[15] Li, P. etYau, S., On the parabolic kernel of the Schrödinger operator,Acta Math. 156 (1986), 153–201. · Zbl 0611.58045
[16] Lohoué, N., Comparaison des champs de vecteurs et du laplacien,J. Funct. Anal. 61 (1985), 164–201. · Zbl 0605.58051
[17] Varopoulos, N., Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet,C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 651–654. · Zbl 0566.31006
[18] Varopoulos, N., Hardy-Littlewood theory for semigroups,J. Funct. Anal. 63 (1985), 240–260. · Zbl 0608.47047
[19] Varopoulos, N., Analysis on nilpotent groups,J. Funct. Anal. 66 (1986), 406–431. · Zbl 0595.22008
[20] Varopoulos, N., Small time Gaussian estimates of heat diffusion kernels. Part I: the semigroup technique,Bull. Sci. Math. 113 (1989), 253–277. · Zbl 0703.58052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.