×

Scattering of linear Dirac fields by a spherically symmetric black-hole. (English) Zbl 0826.53072

This paper presents a time-dependent scattering theory for the linear massless Dirac system on a general Schwarzschild-type metric which covers all the usual cases of spherical black-holes. After presenting the covariant generalization of the linear Dirac system on Schwarzschild-type metrics, the existence of classical wave operators is demonstrated using Cook’s method. There is also demonstrated the asymptotic completeness of classical wave operators at the horizon of the black-hole and at infinity based on the results of A. Bachelot and A. Motet-Bachelot [Ann. Inst. Henri Poincaré, Phys. Théor. 59, No. 1, 3-68 (1993; Zbl 0793.53094)]. The methods in this paper seem to be suitable for demonstrating the existence and asymptotic completeness of Dollard- modified wave operators at infinity.
Reviewer: I.Gottlieb (Iaşi)

MSC:

53Z05 Applications of differential geometry to physics
83C57 Black holes

Citations:

Zbl 0793.53094
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] A. Bachelot , Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric , Internal publication, U.R.A. 226 , 1993 , to appear in Ann. Inst. Henri-Poincaré, Physique Théorique . Numdam | MR 1311537 | Zbl 0809.35141 · Zbl 0809.35141
[2] A. Bachelot , Gravitational Scattering of Electromagnetic Field by Schwarzschild Black-Hole , Ann. Inst. Henri-Poincaré-Physique théorique , Vol. 54 , No. 3 , 1991 , pp. 261 - 320 . Numdam | MR 1122656 | Zbl 0743.53037 · Zbl 0743.53037
[3] A. Bachelot and A. Motet-Bachelot , Les résonances d’un Trou Noir de Schwarzschild , Ann. Inst. Henri-Poincaré, Physique théorique , Vol. 59 , No. 1 , 1993 , pp. 3 - 68 . Numdam | MR 1244181 | Zbl 0793.53094 · Zbl 0793.53094
[4] D.R. Brill and J.A. Wheeler , Interaction of Neutrinos and Gravitational Fields , Revs. Modern Phys. Vol. 29 , 3 , 1957 , pp. 465 - 479 . MR 91828 | Zbl 0078.43503 · Zbl 0078.43503
[5] Y. Choquet-Bruhat and C. Dewitt , Analysis, manifolds and physics, Part I: basics, Revised edition , 1982 , Part II: 92 applications, 1989 , North Holland . MR 678940 | Zbl 0682.58002 · Zbl 0682.58002
[6] Th. Damour , Black-Hole eddy currents , Phys. Rev. D18 , Vol. 10 , 1978 , pp. 3598 - 3604 .
[7] B.S. Dewitt , The space-time approach to quantum field theory , in Relativité, groupes et topologie, les Houches , 1983 , North Holland , 1984 . · Zbl 0596.58014
[8] J. Dimock , Scattering for the wave equation on the Schwarzschild metric , Gen. Relativ. Gravitation , Vol. 17 , No. 4 , 1985 , pp. 353 - 369 . MR 788801 | Zbl 0618.35088 · Zbl 0618.35088
[9] J. Dmock and B.S. Kay , Classical and Quantum Scattering theory for linear scalar fields on the Schwarzschild metric I , Ann. Phys. Vol. 175 , 1987 , pp. 366 - 426 . MR 887979 | Zbl 0628.53080 · Zbl 0628.53080
[10] J. Dollard and G. Velo , Asymptotic behavior of a Dirac particle in a Coulomb field , Il Nuovo Cimento , Vol. 45 , 1966 , pp. 801 - 812 .
[11] V. Enss and B. Thaller , Asymptotic observables and Coulomb scattering for the Dirac equation , Ann. Inst. Henri-Poincaré , Vol. 45 , 2 , 1986 , pp. 147 - 171 . Numdam | MR 866913 | Zbl 0615.47008 · Zbl 0615.47008
[12] I.M. Gel’fand and Z. Ya . Sapiro , Representations of the group of rotations of 3- dimensional space and their applications , Amer. Math. Soc. Transl. , Vol. 2 , 2 , 1956 , pp. 207 - 316 . MR 76290 | Zbl 0070.25902 · Zbl 0070.25902
[13] J.-P. Nicolas , Non linear Klein-Gordon equation on Schwarzschild-like metrics , to appear in J. Math. Pures et appliquées. [14] J.-P. Nicolas , Opérateur de diffusion pour le système de Dirac en métrique de Schwarzschild , to appear in C. R. Acad. Sci. Paris , Vol. 318 , 1994 . MR 1272337 | Zbl 0810.35137 · Zbl 0810.35137
[14] R. Penrose and W. Rindler , Spinors and space-time, Cambridge monographs on mathematical physics , Vol. 1 , Two-spinor calculus in relativistic fields , Cambridge University Press , 1984 . MR 776784 | Zbl 0538.53024 · Zbl 0538.53024
[15] M. Reed and B. Simon , Methods of modern mathematical physics , Vol. III , 1979 , Academic Press . Zbl 0405.47007 · Zbl 0405.47007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.