×

zbMATH — the first resource for mathematics

Locally harmonizable covariance: Spectral analysis. (English) Zbl 0826.60028
Summary: We introduce the notion of locally harmonizable covariance. The motivation is to define a large class of nonstationary processes containing locally stationary and harmonizable cases, for which the covariance admits spectral components.

MSC:
60G12 General second-order stochastic processes
PDF BibTeX XML Cite
Full Text: EuDML Link
References:
[1] D. Dehay: Spectral analysis of the covariance kernel of the almost periodically correlated processes. Stochastic Process. Appl. 50 (1994), 315-330. · Zbl 0793.62050
[2] N. Dunford, J. T. Schwartz: Linear Operators. Part 1: General Theory. Interscience Publishers, New York 1957.
[3] R. K. Getoor: The shift operator for non stationary stochastic processes. Duke Math. Journal 23 (1956), 175-187. · Zbl 0074.12501
[4] M. Loève: Fonctions aléatoires du second ordre. P. Levy: Processus stochastiques et mouvement brownien. Gauthier-Villars, Paris 1948.
[5] J. Michálek: Locally stationary covariances. Trans. Tenth Prague Conf. on Inform. Theory, Statist. Dec. Funct. Random Processes, Academia, Prague 1987.
[6] J. Michálek: Spectral decomposition of locally stationary random processes. Kybernetika 22 (1986), 3, 244-255. · Zbl 0601.60036
[7] J. Michálek: Associated spectra of some nonstationary processes. Kybernetika 24 (1988), 6, 428-438. · Zbl 0662.60051
[8] J. Michálek: Linear transformation of locally stationary processes. Aplikace Matematiky 34 (1989), 1, 57-66. · Zbl 0672.60043
[9] M. M. Rao: Harmonizable Processes: Structure Theory. L’Enseignement Mathematique XXVIII (3-4) (1982), 295-351. · Zbl 0501.60046
[10] Yu. Rozanov: Spectral analysis of abstract functions. Theory Probab. Appl. 4 (1959), 271-287. · Zbl 0089.32602
[11] R. A. Silverman: Locally stationary random processes. IRE Trans. Inform. Theory IT-3 (1957), 3, 182-187.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.