×

zbMATH — the first resource for mathematics

Wiener Tauberian theorems for ultradistributions. (English) Zbl 0827.46033
Summary: The purpose of this paper is the extension of Wiener Tauberian theorems for distributions on ultradistribution spaces. Because of that, we give the versions of Beurling’s and Wiener’s theorems for bounded ultradistributions. The corollary of our main theorem is the following one.
Let \(f\) be an ultradistribution such that \(f/c\) is a bounded ultradistribution, where \(c\) is a smooth function which behaves as \(L(e^x) e^{\alpha x}\), \(x\to \infty\), \(L\) is a slowly varying function at \(\infty\) and \(\alpha\in \mathbb{R}\). If for an ultradifferentiable function \(\varphi\) with the property \({\mathcal F} [\varphi ](\xi- i\alpha) \neq 0\), \(\xi\in \mathbb{R}\), \[ \lim_{x\to\infty} {{(f* \varphi) (x)} \over {L(e^x) e^{\alpha x}}}= a\int \varphi (t) e^{-\alpha t} dt, \qquad a\in \mathbb{R}, \] then for every ultradifferentiable function \(\psi\) \[ {{(f* \psi) (x)} \over {L(e^x) e^{\alpha x}}}\to a\int \psi (t) e^{- \alpha t} dt, \qquad x\to \infty. \]

MSC:
46F05 Topological linear spaces of test functions, distributions and ultradistributions
46F12 Integral transforms in distribution spaces
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] N.H. Bingham - C.M. Goldie - J.L. Teugels , Regular Variation , Cam-bridge University Press ( 1989 ). MR 1015093 | Zbl 0667.26003 · Zbl 0667.26003
[2] W.F. Donoghue , Distribution and Fourier Transforms , Academic Press , New York ( 1969 ). Zbl 0188.18102 · Zbl 0188.18102
[3] H. Komatsu , Ultradistributions , I. : Structure theorems and a characterization , J. Fac. Sci. Univ. Tokyo, Sect. IA Math. , 20 ( 1973 ), pp. 23 - 105 . MR 320743 | Zbl 0258.46039 · Zbl 0258.46039
[4] D. Kovačević - S. Pilipovi , Structural properties of the space of tempered ultradistributions , in Proc. Conf. Complex Analysis and Applications ’91 with Symposium on Generalized Functions, Varna 1991 , pp. 169-184. MR 1275166 | Zbl 0795.46028 · Zbl 0795.46028
[5] S. Pilipovi , Characterizations of bounded sets in spaces of ultradistributions , Proc. Amer. Math. Soc. , to appear. MR 1211587 | Zbl 0816.46026 · Zbl 0816.46026
[6] S. Pilipovi - B. Stankovi , Wiener Tauberian theorems for distributions , J. London Math. Soc. , to appear. MR 1214912 | Zbl 0739.46032 · Zbl 0739.46032
[7] L. Schwartz , Théorie des distributions , Hermann , Paris ( 1966 ). MR 209834 | Zbl 0962.46025 · Zbl 0962.46025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.