×

Thomas’s structure bundle for conformal, projective and related structures. (English) Zbl 0828.53012

In this paper the authors present the construction of the tractor bundle with the tractor connection of a conformal manifold. This construction goes back to T. Y. Thomas [Proc. Natl. Acad. Sci. 11, 588-589 (1925)]. Conformal flatness is equivalent to the flatness of the tractor connection. Then one can discuss conformally invariant differential operators on the tractor bundle. The tractor bundle is an associated vector bundle to a principal bundle. Under this correspondence one gets a relation between the tractor connection and the Cartan connection on the principal bundle. Similar constructions are also possible for other geometric structures, of which the authors discuss projective and paraconformal structures.

MSC:

53A30 Conformal differential geometry (MSC2010)
53A20 Projective differential geometry
Full Text: DOI

References:

[1] T.N. Bailey and M.G. Eastwood, Complex paraconformal manifolds\emdash/their differential geometry and twistor theory , Forum Math. 3 (1991), 61-103. · Zbl 0728.53005 · doi:10.1515/form.1991.3.61
[2] ——–, Conformal circles and parametrizations of curves in conformal manifolds , Proc. Amer. Math. Soc. 108 (1990), 215-221. · Zbl 0684.53016 · doi:10.2307/2047716
[3] T.N. Bailey, M.G. Eastwood and C.R. Graham, Invariant theory for conformal and CR geometry , Ann. Math. 139 (1994), 491-552. JSTOR: · Zbl 0814.53017 · doi:10.2307/2118571
[4] T.N. Bailey and A.R. Gover, Exceptional invariants in the parabolic invariant theory of conformal geometry , Proc. Amer. Math. Soc., to appear. JSTOR: · Zbl 0844.53008 · doi:10.2307/2161285
[5] R.J. Baston, Almost Hermitian symmetric manifolds I- local twistor theory , Duke Math. J. 63 (1991), 81-112. · Zbl 0724.53019 · doi:10.1215/S0012-7094-91-06305-2
[6] R.J. Baston and M.G. Eastwood, Invariant operators , in Twistors in mathematics and physics (T.N. Bailey and R.J. Baston, eds.), London Math. Soc. Lecture Notes 156 , Cambridge University Press, 1990. · Zbl 0760.53015 · doi:10.1112/blms/23.2.153
[7] R.L. Bryant, A duality theorem for Willmore surfaces , J. Differential Geom. 20 (1984), 23-53. · Zbl 0555.53002
[8] K. Dighton, An introduction to the theory of local twistors , Int. J. Theoret. Phys. 11 (1974), 31-43. · doi:10.1007/BF01807935
[9] M.G. Eastwood and J.W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues , Comm. Math. Phys. 109 (1987), 207-228 and Erratum , 144 (1992), 213. · Zbl 0659.53047 · doi:10.1007/BF01215221
[10] M.G. Eastwood and M.A. Singer, A conformally invariant Maxwell gauge , Phys. Lett. A 107 (1985), 73-74. · Zbl 1177.83074 · doi:10.1016/0375-9601(85)90198-7
[11] C. Fefferman and C.R. Graham, Conformal invariants , in Élie Cartan et les mathématiques d’aujourdui , Astérisque (1985), 95-116. · Zbl 0602.53007
[12] R. Geroch, Limits of spacetimes , Comm. Math. Phys. 13 (1969), 180-193. · doi:10.1007/BF01645486
[13] A.R. Gover, Conformally invariant operators of standard type , Quart. J. Math. 40 (1989), 197-207. · Zbl 0683.53063 · doi:10.1093/qmath/40.2.197
[14] ——–, A geometrical construction of conformally invariant diffrential operators , thesis, University of Oxford, 1989.
[15] C.R. Graham, Conformally invariant powers of the Laplacian II: Nonexistence , J. London Math. Soc. 46 (1992), 557-565. · Zbl 0726.53010 · doi:10.1112/jlms/s2-46.3.557
[16] ——–, private, communication. · Zbl 1207.68077
[17] P.A. Griffiths and J. Harris, Principles of algebraic geometry , Wiley, New York, 1978. · Zbl 0408.14001
[18] S. Kobayashi, Transformation groups in differential geometry , Springer, Berlin, 1972. · Zbl 0246.53031
[19] R. Penrose and M.A.H. MacCallum, Twistor theory : An approach to the quantisation of fields and space-time , Phys. Rep. 6 (1972), 241-315. · doi:10.1016/0370-1573(73)90008-2
[20] R. Penrose and W. Rindler, Spinors and space-time , Vol. 1, Cambridge University Press, 1984. · Zbl 0538.53024
[21] ——–, Spinors and space-time , Vol. 2, Camabridge University Press, 1986. · Zbl 0591.53002
[22] S.M. Salamon, Quaternionic Kähler manifolds , Invent. Math. 67 (1982), 143-171. · Zbl 0486.53048 · doi:10.1007/BF01393378
[23] J.A. Schouten, Differenital geometry of quaternionic manifolds , Ann. Scient. Éc. Norm. Sup., 4\(^\texte\) série 19 (1986), 31-55. · Zbl 0616.53023
[24] ——–, Ricci-Calculus , Springer, Berlin, 1954.
[25] J. Slovák, Invariant operators on conformal manifolds , Lecture Notes, University of Vienna, 1992.
[26] T.Y. Thomas, Announcement of a projective theory of affinely connected manifolds , Proc. Nat. Acad. Sci. 11 (1925), 588-589. · JFM 51.0570.01
[27] ——–, On conformal geometry , Proc. Nat. Acad. Sci. 12 (1926), 352-359. · JFM 52.0736.01
[28] ——–, Conformal tensors I, Proc. Nat. Acad. Sci. 18 (1932), 103-112. · Zbl 0003.36501
[29] ——–, The differential invariants of generalized spaces , Cambridge University Press, 1934. · Zbl 0009.08503
[30] K. Yano, The theory of the Lie derivative and its applications , North Holland, Amsterdam, 1955. · Zbl 0067.39704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.