×

zbMATH — the first resource for mathematics

A critical point theory for nonsmooth functionals. (English) Zbl 0828.58006
In this paper a suitable definition of “norm of differential” and the notion of critical points are introduced for continuous functionals on metric spaces. By means of this new definition, the classical results of Lyusternik-Schnirelmann on critical point theory for smooth functionals on manifolds are extended to continuous functionals on complete metric spaces. Applications of these new techniques are presented to obtain a multiplicity result on solutions of an elliptic variational inequality.
Reviewer: A.Masiello (Bari)

MSC:
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
58E35 Variational inequalities (global problems) in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[2] Aubin, J. P.; Ekeland, I., Applied Nonlinear Analysis, Pure and Applied Mathematics (1984), New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York
[3] Canino, A.; Perri, U., Eigenvalues of the p-Laplace operator with respect to two obstacles, Rend. Accad. Sci. Fis. Mat. Napoli, 58, 5-32 (1991) · Zbl 1157.35439
[4] Chang, K. C., Variational methods for non-differentiable functional and their applications to partial differential equations, J. Math. Anal. Appl., 80, 102-129 (1981) · Zbl 0487.49027
[5] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York · Zbl 0582.49001
[6] Čobanov, G.; Marino, A.; Scolozzi, D., Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle, Rend. Accad. Naz. Sci. XL Mem. Mat., 14, 139-162 (1990) · Zbl 0729.35088
[7] Čobanov, G.; Marino, A.; Scolozzi, D., Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle, and nontangency conditions, Nonlinear Anal., 15, 199-215 (1990) · Zbl 0716.49009
[8] De Giorgi, E.; Degiovanni, M.; Marino, A.; Tosques, M., Evolution equations for a class of non-linear operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 75, 1-8 (1983) · Zbl 0597.47045
[9] De Giorgi, E.; Marino, A.; Tosques, M., Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68, 180-187 (1980) · Zbl 0465.47041
[10] Degiovanni, M., Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl. (4), 156, 37-71 (1990) · Zbl 0722.58013
[11] Degiovanni, M.; Marino, A.; Tosques, M., Evolution equations with lack of convexity, Nonlinear Anal., 9, 1401-1443 (1985) · Zbl 0545.46029
[12] Ekeland, I., Nonconvex minimization problems, Bull. Amer. Math Soc, 1, 443-474 (1979) · Zbl 0441.49011
[13] Fox, R. H., On the Lusternik-Schnirelmann category, Ann. of Math., 42, 333-370 (1941) · JFM 67.0741.02
[14] Kuratowski, K., Topologie I (1958), Warsaw: P.W.N., Warsaw
[15] Leaci, A.; Scolozzi, D., Esistenza e molteplicità per gli autovalori non lineari dell’operatore-Δ-g rispetto a due ostacoli, Ann. Univ. Ferrara, Sez. VII, 35, 71-98 (1989) · Zbl 0737.35059
[16] Marino, A.; Scolozzi, D., Geodetiche con ostacolo, Boll. Un. Mat. Ital. B (6), 2, 1-31 (1983) · Zbl 0563.53034
[17] Palais, R. S., Lusternik-Schnirelman theory on Banach manifolds, Topology, 5, 115-132 (1966) · Zbl 0143.35203
[18] P. H.Rabinowitz,Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics,65, published for the Conference Board of the Mathematical Sciences, Washington D.C. by the American Mathematical Society, Providence, R.I. (1986). · Zbl 0609.58002
[19] Szulkin, A., Minimax principles for lower semicontinuous functions and application to nonlinear boundary value problems, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 3, 77-109 (1986) · Zbl 0612.58011
[20] Szulkin, A., Ljusternik-Schnirelmann theory on C^1-manifolds, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 5, 119-139 (1988) · Zbl 0661.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.