zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A critical point theory for nonsmooth functionals. (English) Zbl 0828.58006
In this paper a suitable definition of “norm of differential” and the notion of critical points are introduced for continuous functionals on metric spaces. By means of this new definition, the classical results of Lyusternik-Schnirelmann on critical point theory for smooth functionals on manifolds are extended to continuous functionals on complete metric spaces. Applications of these new techniques are presented to obtain a multiplicity result on solutions of an elliptic variational inequality.

58E05Abstract critical point theory
58E35Variational inequalities (global problems)
Full Text: DOI
[1] A. Ambrosetti -P. H. Rabinowitz,Dual variational methods in critical point theory and applications, J. Funct. Anal.,14 (1973), pp. 349--381. · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] J. P. Aubin -I. Ekeland,Applied Nonlinear Analysis, Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York (1984). · Zbl 0641.47066
[3] A. Canino -U. Perri,Eigenvalues of the p-Laplace operator with respect to two obstacles, Rend. Accad. Sci. Fis. Mat. Napoli,58 (1991), pp. 5--32. · Zbl 1157.35439
[4] K. C. Chang,Variational methods for non-differentiable functional and their applications to partial differential equations, J. Math. Anal. Appl.,80 (1981), pp. 102--129. · Zbl 0487.49027 · doi:10.1016/0022-247X(81)90095-0
[5] F. H. Clarke,Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York (1983). · Zbl 0582.49001
[6] G. Čobanov -A. Marino -D. Scolozzi,Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle, Rend. Accad. Naz. Sci. XL Mem. Mat.,14 (1990), pp. 139--162. · Zbl 0729.35088
[7] G. Čobanov -A. Marino -D. Scolozzi,Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle, and nontangency conditions, Nonlinear Anal.,15 (1990), pp. 199--215. · Zbl 0716.49009 · doi:10.1016/0362-546X(90)90157-C
[8] E. De Giorgi -M. Degiovanni -A. Marino -M. Tosques,Evolution equations for a class of non-linear operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),75 (1983), pp. 1--8 (1984). · Zbl 0597.47045
[9] E. De Giorgi -A. Marino -M. Tosques,Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),68 (1980), pp. 180--187. · Zbl 0465.47041
[10] M. Degiovanni,Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl. (4),156 (1990), pp. 37--71. · Zbl 0722.58013 · doi:10.1007/BF01766973
[11] M. Degiovanni -A. Marino -M. Tosques,Evolution equations with lack of convexity, Nonlinear Anal.,9 (1985), pp. 1401--1443. · Zbl 0574.46031 · doi:10.1016/0362-546X(85)90098-7
[12] I. Ekeland,Nonconvex minimization problems, Bull. Amer. Math Soc,1 (1979), pp. 443--474. · Zbl 0441.49011 · doi:10.1090/S0273-0979-1979-14595-6
[13] R. H. Fox,On the Lusternik-Schnirelmann category, Ann. of Math.,42 (1941), pp. 333--370. · Zbl 0027.43104 · doi:10.2307/1968905
[14] K. Kuratowski,Topologie I, P.W.N., Warsaw (1958).
[15] A. Leaci -D. Scolozzi,Esistenza e molteplicità per gli autovalori non lineari dell’operatore-{$\Delta$}-g rispetto a due ostacoli, Ann. Univ. Ferrara, Sez. VII,35 (1989). pp. 71--98. · Zbl 0737.35059
[16] A. Marino -D. Scolozzi,Geodetiche con ostacolo, Boll. Un. Mat. Ital. B (6),2 (1983), pp. 1--31.
[17] R. S. Palais,Lusternik-Schnirelman theory on Banach manifolds, Topology,5 (1966), pp. 115--132. · Zbl 0143.35203 · doi:10.1016/0040-9383(66)90013-9
[18] P. H.Rabinowitz,Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics,65, published for the Conference Board of the Mathematical Sciences, Washington D.C. by the American Mathematical Society, Providence, R.I. (1986). · Zbl 0609.58002
[19] A. Szulkin,Minimax principles for lower semicontinuous functions and application to nonlinear boundary value problems, Ann. Inst. H. Poincaré. Anal. Non Linéaire,3 (1986), pp. 77--109. · Zbl 0612.58011
[20] A. Szulkin,Ljusternik-Schnirelmann theory on C 1-manifolds, Ann. Inst. H. Poincaré. Anal. Non Linéaire,5 (1988), pp. 119--139. · Zbl 0661.58009