Levitt, Gilbert \(\mathbb{R}\)-trees and the Bieri-Neumann-Strebel invariant. (English) Zbl 0829.20038 Publ. Mat., Barc. 38, No. 1, 195-202 (1994). For a finitely generated group \(G\) a new characterization of the invariant \(\Sigma(G)\) [see R. Bieri, W. D. Neumann and R. Strebel, Invent. Math. 90, 451-477 (1987; Zbl 0642.57002)] in terms of special actions of \(G\) on \(\mathbb{R}\)-trees is given. K. S. Brown’s characterization of \(\Sigma\) [ibid., 479-504 (1987; Zbl 0663.20033)] is reproved in the same manner. Reviewer: Yu.N.Mukhin (Ekaterinburg) Cited in 5 Documents MSC: 20E08 Groups acting on trees 57M05 Fundamental group, presentations, free differential calculus 20F65 Geometric group theory Keywords:actions on \(\mathbb{R}\)-trees; finitely generated groups Citations:Zbl 0642.57002; Zbl 0663.20033 PDFBibTeX XMLCite \textit{G. Levitt}, Publ. Mat., Barc. 38, No. 1, 195--202 (1994; Zbl 0829.20038) Full Text: DOI EuDML