×

zbMATH — the first resource for mathematics

Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. (English) Zbl 0829.35128
The authors study the relaxation problem for a hydrodynamic isentropic Euler-Poisson system when the momentum relaxation time tends to zero. They obtain some estimates on the solutions, independent of the relaxation time. The estimates are used to establish compactness.

MSC:
35Q60 PDEs in connection with optics and electromagnetic theory
78A35 Motion of charged particles
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] U. M. Ascher, P. A. Markowich, P. Pietra & C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Mod. Math. Appl. Sci., 1 (1991) 347-376. · Zbl 0800.76032 · doi:10.1142/S0218202591000174
[2] A. M. Anile & S. Pennisi, Extended thermodynamics of the Blotekjear hydrodynamical model for semiconductors, Continuum Mech. Therm., 4 (1992), 187-193. · Zbl 1174.82324 · doi:10.1007/BF01130290
[3] A. M. Anile & S. Pennisi, Thermodynamics derivation of the hydrodynamical model for charge transport in semiconductors, Physical Rev. B: Condensed Matter, 46 (1992), 13186-13193. · Zbl 1174.82324 · doi:10.1103/PhysRevB.46.13186
[4] G. Baccarani & M. R. Worderman, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid State Electr., 28 (1985), 407-416. · doi:10.1016/0038-1101(85)90100-5
[5] G.-Q. Chen & T.-P. Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. Pure Appl. Math., 46 (1993), 755-781. · Zbl 0797.35113 · doi:10.1002/cpa.3160460504
[6] G.-Q. Chen, C. Levermore & T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830. · Zbl 0806.35112 · doi:10.1002/cpa.3160470602
[7] C. M. Dafermos & L. Hsiao, Hyperbolic systems of balance law with inhomogeneity and dissipation, Indiana Univ. Math. J., 31 (1982), 471-491. · Zbl 0497.35058 · doi:10.1512/iumj.1982.31.31039
[8] X. Ding, G.-Q. Chen & P. Luo, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (I), (II), Acta Math. Sci., 5 (1985), 483-500, 501-540. · Zbl 0643.76085
[9] X. Ding, G.-Q. Chen & P. Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godounov scheme for isentropic gas dynamics, Comm. Math. Phys., 121 (1989), 63-84. · Zbl 0689.76022 · doi:10.1007/BF01218624
[10] R. DiPerna, Convergence of approximate solutions of conservation laws, Arch. Rational Mech. Anal., 82 (1983), 27-70. · Zbl 0519.35054 · doi:10.1007/BF00251724
[11] R. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91 (1983), 1-30. · Zbl 0533.76071 · doi:10.1007/BF01206047
[12] I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Diff. Eqs., 17 (1992), 553-577. · Zbl 0748.35049
[13] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equation of hydrodynamics, Math. Sb., 47 (1959), 271-306. · Zbl 0171.46204
[14] F. Jochmann, Global weak solutions of the one-dimensional hydrodynamic model for semiconductors, Math. Mod. Meth. Appl. Sci., 3 (1993) 759-788. · Zbl 0799.35204 · doi:10.1142/S0218202593000382
[15] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math., 7 (1954), 159-193. · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[16] J. L. Lions, Perturbations singulières dans les problèmes aux limites et en controle optimale, in Lectures Notes in Math., 323, Springer-Verlag, Berlin (1984).
[17] P. A. Marcati & A. Milani, The one-dimensional Darcy’s law as the limit of a compressible Euler flow, J. Diff. Eq., 84 (1990), 129-147. · Zbl 0715.35065 · doi:10.1016/0022-0396(90)90130-H
[18] P. A. Marcati, A. J. Milani & P. Secchi, Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Math., 60 (1988), 49-69. · Zbl 0617.35078 · doi:10.1007/BF01168147
[19] P. A. Marcati & R. Natalini, Weak solutions to a hydrodynamical model for semiconductors: the Cauchy problem, to appear in Proc. Roy. Soc. Edinburgh. · Zbl 0831.35157
[20] P. A. Markowich & P. Pietra, A non-isentropic Euler-Poisson model for a collisionless plasma, Math. Meth. Appl. Sci. 16 (1993), 409-442. · Zbl 0771.76075 · doi:10.1002/mma.1670160603
[21] P. A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York (1990).
[22] F. Odeh & M. Rudan, Multi-dimensional discretization scheme for the hydrodynamic model of semiconductors devices, Compel, 5 (1986) 149-183. · Zbl 0622.76085
[23] F. Poupaud, Derivation of a hydrodynamic system hierarchy from the Boltzmann equation, Appl. Math. Letters, 4 (1992), 75-79. · Zbl 0733.35102 · doi:10.1016/0893-9659(91)90127-H
[24] F. Poupaud, M. Rascle & J. P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrary large data, to appear in J. Diff. Eqs. · Zbl 0845.35123
[25] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York (1983). · Zbl 0508.35002
[26] L. Tartar, Compensated compactness and applications to partial differential equations, Research notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, ed. R. J. Knops, New York, Pitman Press (1979), 136-212.
[27] W. V. Van Roosbroeck, Theory of flow of electrons and holes in germanium and other semiconductors, Bell Syst. Techn. J., 29 (1950), 560-607. · Zbl 1372.35295
[28] Bo Zhang, Convergence of the Godunov scheme for a simplified one dimensional hydordynamic model for semiconductor devices, Comm. Math. Phys., 157 (1992), 1-22. · Zbl 0785.76053 · doi:10.1007/BF02098016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.