zbMATH — the first resource for mathematics

Comparison and analysis of some numerical schemes for stiff complex chemistry problems. (English) Zbl 0829.76062
Considering the finite-volume solution of multi-dimensional multi-species reactive flows with complex chemistry, we concentrate on the numerical treatment of the chemical source terms in a fractional step approach. For two air-hydrogen chemistry models, we compare the numerical efficiency of linearized or totally implicit schemes, in both temperature-mass- fractions coupled and uncoupled formulations; we also use two popular specialized solvers, LSODE and DASSL.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76V05 Reaction effects in flows
80A32 Chemically reacting flows
Full Text: DOI EuDML
[1] Y. D’ANGELO, Simulation numérique de phénomènes liés à la combustion supersonique, Thèse, ENPC, Paris (1994).
[2] J. A. DESIDERI, N. GLINSKY & E. HETTENA, Hypersonic reactive flow computation, Comp. Fluids, 18, (2), 1990, pp. 151-182.
[3] J. A. DESIDERI, N. GLINSKY & L. FEZOUI, Numerical computation of the chemical dissociation and relaxation phenomena behind a detached strong shock, INRIA Report 774, 1987.
[4] M. GHILANI & B. LARROUTUROU, Upwind computation of steady planar flames with complex chemistry, Mod. Math. Anal. Num., 25, (1), 1991, pp. 67-92. Zbl0717.65109 MR1086841 · Zbl 0717.65109 · eudml:193622
[5] A. C. HlNDMARSH, ODEPACK, a systematized collection of ODE solvers, IMACS Trans. on Sc. Comp., Stepleman et al. eds., pp.55-64, North-Holland, Amsterdam, 1983. MR751604
[6] R. J. KEE, J. A. MILLER & T. H. JEFFERSON, CHEMKIN : a general purpose, problem-independent, transportable, FORTRAN chemical kinetics code package, SANDIA Report SAND83-8209, 1983.
[7] B. LARROUTUROU, How to preserve mass fractions positivity when Computing compressible multi-component flows, J. Comp. Phys., 95, (1), 1991, pp. 59-84. Zbl0725.76090 MR1112315 · Zbl 0725.76090 · doi:10.1016/0021-9991(91)90253-H
[8] C. P. LI, Implicit methods for Computing chemically reacting flows, NASA Techn. Mem. 58274, Houston, 1986.
[9] L. R. PETZOLD, A Description of DASSL : a differential/algebraic System solver, IMACS Trans. on Sc. Comp., Stepleman et al. eds.,North-Holland, Amsterdam, 1983. MR751605
[10] M. D. SMOOKE, A. A. TURNBULL, R. E. MITCHELL & D. E. KEYES, Solution of two-dimensional axisymmetric laminar diffusion flames by adaptive boundary value methods, Mathematical modelling in combustion and related topics, Brauner & Schmidt-Lainé eds., pp.261-300, NATO ASI Series E, Nijhoff, Doordrecht, 1988.
[11] R. S. VARGA, Matrix iterative analysis, Prentice Hall, 1962. Zbl0133.08602 MR158502 · Zbl 0133.08602
[12] F. M. WHITE, Viscous fluid flow (second edition), McGraw-Hill, New-York, 1991. Zbl0356.76003 · Zbl 0356.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.