×

Tensor products of \(D\)-posets and \(D\)-test spaces. (English) Zbl 0830.03031

A \(D\)-poset (or a difference poset) is a poset \(L\) with the greatest element 1 and a partial binary operation \(\ominus: L\times L\to L\) such that \(b\ominus a\) is defined iff \(a\leq b\) and, for \(a,b, c\in L\), we have (i) \(b\ominus a\leq b\); (ii) \((b\ominus (b\ominus a))=a\); (iii) if \(a\leq b\leq c\), then \(c\ominus b\leq c\ominus a\) and \((c\ominus a) \ominus (c\ominus b)= b\ominus a\). For any \(D\)-poset, there exists a \(D\)- test space [the authors, Rep. Math. Phys. 34, 151-170 (1994; Zbl 0820.03038)]. Using this representation, a tensor product and a state tensor product of \(D\)-posets is introduced and studied, and some examples are presented.

MSC:

03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)

Citations:

Zbl 0820.03038
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Busch, P.; Lahti, P. J.; Mittelstaedt, P., The quantum theory of measurement, (Lecture Notes in Physics (1991), Springer: Springer Berlin, Heidelberg, New York, London, Budapest) · Zbl 0868.46051
[2] Dirac, P. A.M., The Principles of Quantum Mechanics (1930), Clarendon Press: Clarendon Press Oxford · Zbl 0030.04801
[3] Dvurečenskij, A., Gleason’s Theorem and its Applications (1993), Kluwer Academic Publ: Kluwer Academic Publ Dordrecht, Boston, London · Zbl 0795.46045
[4] Dvurečenskij, A., Trans. Amer. Math. Soc. (1994), (to appear)
[5] Dvurečenskij, A.; Pulmannová, S., Inter. J. Theor. Phys., 33, 819 (1994) · Zbl 0806.03040
[6] Dvurečenskij, A.; Pulmannová, S., Rep. Math. Phys., 34, 151 (1994) · Zbl 0820.03038
[7] A. Dvurečenskij and S. Pulmannová: Lett. Math. Phys.; A. Dvurečenskij and S. Pulmannová: Lett. Math. Phys.
[8] Dvurečenskij, A.; Riečan, B., Inter. J. Theor. Phys., 33, 1403 (1994)
[9] Foulis, D. J.; Bennett, M. K., Order, 19, 271 (1993)
[10] Foulis, D. J.; Bennett, M. K., Found. Phys. (1994), (to appear)
[11] Foulis, D. J.; Greechie, R. J.; Rüttimann, G. T., Inter. J. Theor. Phys., 31, 787 (1992)
[12] Foulis, D. J.; Randall, C. H., J. Math. Phys., 13, 1667 (1972) · Zbl 0287.60002
[13] Hedlíková, J.; Pulmannová, S., Generalized difference posets and orthoalgebras, Preprint MÚ SAV (1994) · Zbl 0922.06002
[14] Kalmbach, G.; Riečanová, Z., An axiomatization for abelian relative inverses, Preprint STU Bratislava (1993) · Zbl 0826.08002
[15] Kolmogorov, A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung (1993), Berlin · Zbl 0278.60002
[16] Kôpka, F.; Chovanec, F., Math. Slovaca, 44, 21 (1994) · Zbl 0789.03048
[17] Mesiar, R., Fuzzy difference posets and MV-algebras, Preprint STU (1993), Bratislava
[18] M. Navara and P. Pták: Difference posets and orthoalgebras (submitted).; M. Navara and P. Pták: Difference posets and orthoalgebras (submitted).
[19] von Neumann, J., Mathematische Grundlagen der Quantenmechanik (1932), Springer: Springer Berlin · JFM 58.0929.06
[20] Pulmannová, S., Demonstratio Math., 27 (1994)
[21] Randall, C. H.; Foulis, D. J., J. Math. Phys., 14, 1472 (1973) · Zbl 0287.60003
[22] Riečanová, Z.; Bršel, D., Inter. J. Theor. Phys., 33, 133 (1994) · Zbl 0795.03092
[23] Varadarajan, V. S., Geometry of Quantum Theory, Vol. 1 (1968), van Nostrand: van Nostrand Princeton · Zbl 0155.56802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.