Chung, J. K.; Ebanks, B. R.; Ng, C. T.; Sahoo, P. K. On a quadratic-trigonometric functional equation and some applications. (English) Zbl 0830.39014 Trans. Am. Math. Soc. 347, No. 4, 1131-1161 (1995); erratum ibid. 349, No. 11, 4691 (1997). In the process of obtaining the general solutions (which are five in number) of (FE) \(f_1(xy) + f_2(xy^{-1}) = f_3(x) + f_4(y) + f_5(x) f_6(y)\) under the condition \((*)\) \(f_i(xyz)= f_i (xzy)\) \((i = 1,2)\) where \(f_i\)’s are complex valued functions on a group, the authors obtain the general solutions of many functional equations including \(f(xy) + f(xy^{-1}) = p(x) + p(y) + q(x) h(y)\) and \(f(xy) - f(xy^{-1}) = k(x) + h(x)g(y)\) where \(f\) satisfies \((*)\). Special cases of (FE) include the Pexider, quadratic, d’Alembert and Wilson equations. Reviewer: Pl.Kannappan (Waterloo/Ontario) Cited in 12 Documents MSC: 39B52 Functional equations for functions with more general domains and/or ranges 39B32 Functional equations for complex functions Keywords:quadratic-trigonometric functional equation; Pexider equation; d’Alembert equation; complex valued functions on a group; general solutions; Wilson equations PDF BibTeX XML Cite \textit{J. K. Chung} et al., Trans. Am. Math. Soc. 347, No. 4, 1131--1161 (1995; Zbl 0830.39014) Full Text: DOI OpenURL References: [1] J. Aczél, J. K. Chung, and C. T. Ng, Symmetric second differences in product form on groups, Topics in mathematical analysis, Ser. Pure Math., vol. 11, World Sci. Publ., Teaneck, NJ, 1989, pp. 1 – 22. · Zbl 0731.39010 [2] J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge, 1988. · Zbl 1139.39043 [3] J. K. Chung, B. R. Ebanks, C. T. Ng, and P. K. Sahoo, On a functional equation connected with Rao’s quadratic entropy, Proc. Amer. Math. Soc. 120 (1994), no. 3, 843 – 848. · Zbl 0798.39005 [4] J. K. Chung, Pl. Kannappan, and C. T. Ng, A generalization of the cosine-sine functional equation on groups, Linear Algebra Appl. 66 (1985), 259 – 277. · Zbl 0564.39002 [5] B. R. Ebanks, Pl. Kannappan, and P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. 35 (1992), no. 3, 321 – 327. · Zbl 0712.39021 [6] Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. · Zbl 0124.27002 [7] Pl. Kannappan, The functional equation \?(\?\?)+\?(\?\?\(^{-}\)\textonesuperior )=2\?(\?)\?(\?) for groups, Proc. Amer. Math. Soc. 19 (1968), 69 – 74. · Zbl 0169.48102 [8] E. L. Koh, The Cauchy functional equations in distributions, Proc. Amer. Math. Soc. 106 (1989), no. 3, 641 – 646. · Zbl 0687.46025 [9] Ka-Sing Lau, Characterization of Rao’s quadratic entropies, Sankhyā Ser. A 47 (1985), no. 3, 295 – 309. · Zbl 0587.94011 [10] R. C. Penney and A. L. Rukhin, d’Alembert’s functional equation on groups, Proc. Amer. Math. Soc. 77 (1979), no. 1, 73 – 80. · Zbl 0445.39004 [11] A. L. Rukhin, The solution of the functional equation of d’Alembert’s type for commutative groups, Internat. J. Math. Math. Sci. 5 (1982), no. 2, 315 – 335. · Zbl 0496.39003 [12] Halina Światak, On two functional equations connected with the equation \?(\?+\?)+\?(\?-\?)=2\?(\?)+2\?(\?), Aequationes Math. 5 (1970), 3 – 9. · Zbl 0203.46203 [13] László Székelyhidi, Convolution type functional equations on topological abelian groups, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. · Zbl 0748.39003 [14] W. Harold Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1920), no. 7, 300 – 312. · JFM 47.0320.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.