×

zbMATH — the first resource for mathematics

Inert subgroups in infinite simple groups. (English. Russian original) Zbl 0831.20033
Sib. Math. J. 34, No. 4, 606-611 (1993); translation from Sib. Mat. Zh. 34, No. 4, 17-23 (1993).
Subgroups \(A\) and \(B\) of a group \(G\) are called commensurable if \(A \cap B\) is a subgroup of finite index in \(A\) as well as in \(B\). If a subgroup is commensurable with each of its conjugate subgroups in \(G\) then we call \(A\) inert in \(G\) (the term “inert subgroup” was proposed by O. H. Kegel). The present paper is devoted to the study of the relation between the structure of normal subgroups in an inert subgroup and the normal structure of the entire group. We apply the results obtained in this direction to examine the structure of inert subgroups in simple groups.

MSC:
20E07 Subgroup theorems; subgroup growth
20E32 Simple groups
20F50 Periodic groups; locally finite groups
20F24 FC-groups and their generalizations
20E15 Chains and lattices of subgroups, subnormal subgroups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. V. Belyaev, ?Locally finite groups containing a finite inseparable subgroup,? Sibirsk. Mat. Zh.,34, No. 2, 23-41 (1993). · Zbl 0836.20051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.