Kittaneh, Fuad Normal derivations in norm ideals. (English) Zbl 0831.47036 Proc. Am. Math. Soc. 123, No. 6, 1779-1785 (1995). Summary: We establish the orthogonality of the range and the kernel of a normal derivation with respect to the unitarily invariant norms associated with norm ideals of operators. Related orthogonality results for certain nonnormal derivations are also given. Cited in 1 ReviewCited in 18 Documents MSC: 47L20 Operator ideals 47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.) 47B47 Commutators, derivations, elementary operators, etc. 47A30 Norms (inequalities, more than one norm, etc.) of linear operators 47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.) 47B20 Subnormal operators, hyponormal operators, etc. 46B20 Geometry and structure of normed linear spaces Keywords:orthogonality of the range and the kernel of a normal derivation; unitarily invariant norms associated with norm ideals of operators; nonnormal derivations PDF BibTeX XML Cite \textit{F. Kittaneh}, Proc. Am. Math. Soc. 123, No. 6, 1779--1785 (1995; Zbl 0831.47036) Full Text: DOI References: [1] Joel Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135 – 140. · Zbl 0255.47036 [2] Rajendra Bhatia and Fuad Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann. 287 (1990), no. 4, 719 – 726. · Zbl 0688.47005 [3] Stephen L. Campbell and Ralph Gellar, Spectral properties of linear operators for which \?*\? and \? + \?* commute, Proc. Amer. Math. Soc. 60 (1976), 197 – 202 (1977). · Zbl 0318.47018 [4] B. P. Duggal, On generalised Putnam-Fuglede theorems, Monatsh. Math. 107 (1989), no. 4, 309 – 332. · Zbl 0713.47020 [5] B. P. Duggal, A remark on normal derivations of Hilbert-Schmidt type, Monatsh. Math. 112 (1991), no. 4, 265 – 270. · Zbl 0737.47021 [6] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413 – 415. · Zbl 0146.12503 [7] S. N. Elalami, Opérateurs complètement finis, preprint. [8] Wen Ying Feng and Guo Xing Ji, A counterexample in the theory of derivations, Glasgow Math. J. 31 (1989), no. 2, 161 – 163. · Zbl 0694.47017 [9] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. · Zbl 0181.13503 [10] Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York-Berlin, 1982. Encyclopedia of Mathematics and its Applications, 17. · Zbl 0496.47001 [11] Fuad Kittaneh, On normal derivations of Hilbert-Schmidt type, Glasgow Math. J. 29 (1987), no. 2, 245 – 248. · Zbl 0631.47023 [12] P. J. Maher, Commutator approximants, Proc. Amer. Math. Soc. 115 (1992), no. 4, 995 – 1000. · Zbl 0773.47020 [13] Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. · Zbl 0090.09402 [14] Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. · Zbl 0423.47001 [15] Joseph G. Stampfli and Bhushan L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359 – 365. · Zbl 0326.47028 [16] Katsutoshi Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged) 43 (1981), no. 1-2, 123 – 125. · Zbl 0472.47013 [17] J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970), 129 – 136. · Zbl 0199.19302 [18] Takashi Yoshino, Subnormal operator with a cyclic vector, Tôhoku Math. J. (2) 21 (1969), 47 – 55. · Zbl 0192.47801 [19] Takashi Yoshino, Remark on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 95 (1985), no. 4, 571 – 572. · Zbl 0602.47016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.