×

zbMATH — the first resource for mathematics

Remarks about \(c>1\) and \(D>2\). (English) Zbl 0831.53055
Theor. Math. Phys. 98, No. 3, 219-226 (1994) and Teor. Mat. Fiz. 98, No. 3, 326-336 (1994).
Summary: In this note the author discusses recent progress in the understanding of quantum gravity in the two cases: the case of central charge \(c> 1\) for \(2d\) quantum gravity and the case of \(D > 2\) for Euclidean Einstein- Hilbert gravity formulated in space-time dimensions \(D\).

MSC:
53Z05 Applications of differential geometry to physics
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. David, Nucl. Phys.B257 (1985) 45. · doi:10.1016/0550-3213(85)90335-9
[2] J. Ambjørn, B. Durhuus, and J. Fröhlich, Nucl. Phys.B257 (1985) 433. · doi:10.1016/0550-3213(85)90356-6
[3] F. David, Nucl. Phys.B257 (1985) 543. · doi:10.1016/0550-3213(85)90363-3
[4] V. A. Kazakov, I. K. Kostov, and A. Migdal, Phys. Lett.157B (1985) 295.
[5] J. Ambjørn, B. Durhuus, J. Fröhlich, and P. Orland, Nucl. Phys.B270 (1986) 457. · doi:10.1016/0550-3213(86)90563-8
[6] E. Brezin and S. Hikami, Phys. Lett.B295 (1992) 209. · doi:10.1016/0370-2693(92)91555-N
[7] S. Hikami, Phys. Lett.B305 (1993) 327. · doi:10.1016/0370-2693(93)91062-R
[8] J. Ambjørn, S. Jain, and G. Thorleifsson, Phys. Lett.B307 (1993) 34. · doi:10.1016/0370-2693(93)90188-N
[9] J. Ambjørn, B. Durhuus, T. Jonsson, and G. Thorleifsson, Nucl. Phys.B398 (1993) 568. · doi:10.1016/0550-3213(93)90604-N
[10] M. Wexler,Matrix models on large graphs, PUPT-1398, Bulletin Board: hep-th@xxx.lanl.gov-9305041;Low temperature expansion of matrix models, PUPT-1384, Bulletin Board: hep-th@xxx.lanl.gov-9303146.
[11] C.A. Baillie and J.D. Johnston, Phys. Lett.B286 (1992) 44. · doi:10.1016/0370-2693(92)90156-X
[12] S.M. Catterall, J.B. Kogut, and R.L. Renken, Phys. Lett.B292 (1992) 277. · doi:10.1016/0370-2693(92)91175-9
[13] J. Ambjørn, B. Durhuus, and J. Fröhlich, Nucl. Phys.B275 [FS17] (1986) 161. · doi:10.1016/0550-3213(86)90594-8
[14] J. Ambjørn, B. Durhuus, T. Jonsson, Phys. Lett.B244 (1990) 403. · doi:10.1016/0370-2693(90)90337-6
[15] B. Durhuus, unpublished.
[16] S.R. Das, A. Dhar, A.M. Sengupta, and S.R. Wadia, Mod. Phys. Lett.A5 (1990) 1041. · Zbl 1020.81740 · doi:10.1142/S0217732390001165
[17] G.P. Korchemsky, Phys. Lett.B296 (1992) 323;Matrix models perturbed by higher curvature terms, UPRF-92-334. · doi:10.1016/0370-2693(92)91328-7
[18] L. Alvarez-Gaume, J.L.F. Barbon, and C. Crnkovic, Nucl. Phys.B394 (1993) 383. · doi:10.1016/0550-3213(93)90020-P
[19] J. Ambjør, B. Durhuus, and T. Jonsson, Phys. Rev. Lett.58 (1987) 2619. · doi:10.1103/PhysRevLett.58.2619
[20] J. Ambjørn, B. Durhuus, J. Fröhlich, and T. Jonsson, Nucl. Phys.B290 [FS20] (1987) 480. · doi:10.1016/0550-3213(87)90200-8
[21] J. Ambjørn and B. Durhuus, Phys. Lett188B (1987) 253.
[22] J. Ambjørn, B. Durhuus, J. Fröhlich, and T. Jonsson, J. Stat. Phys.55 (1989) 29. · Zbl 0709.60556 · doi:10.1007/BF01042591
[23] S.M. Catterall, Phys. Lett.B243 (1990) 121. · doi:10.1016/0370-2693(90)90967-B
[24] J. Ambjørn, A. Irbäck, J. Jurkiewicz, and B. Petersson, Nucl. Phys.B393 (1993) 571. · Zbl 1245.81232 · doi:10.1016/0550-3213(93)90074-Y
[25] J. Ambjørn, A. Irbäck, J. Jurkiewicz, B. Petersson, and S. Varsted, Phys. Lett.B275 (1992) 295. · doi:10.1016/0370-2693(92)91593-X
[26] J. Ambjørn, B. Durhuus, and T. Jonsson, Nucl. Phys.B316 (1989) 526. · doi:10.1016/0550-3213(89)90057-6
[27] R. G. Harnish and J.F. Wheater, Nucl. Phys.B350 (1991) 861. · doi:10.1016/0550-3213(91)90166-U
[28] J. Greensite and M. Halpern, Nucl. Phys.B242 (1984) 167. · doi:10.1016/0550-3213(84)90138-X
[29] J. Ambjørn and J. Greensite, Phys. Lett.B254 (1991) 66 · doi:10.1016/0370-2693(91)90397-9
[30] J. Ambjørn, J. Jurkiewicz, and C.F. Kristjansen, Nucl. Phys.B393 (1993) 601. · Zbl 1245.83007 · doi:10.1016/0550-3213(93)90075-Z
[31] J. Ambjørn, Z. Burda, J. Jurkiewicz, and C.F. Kristjansen, Acta Physica PolonicaB23 (1992) 991.
[32] J. Ambjørn, Z. Burda, J. Jurkiewicz, and C.F. Kristjansen,4d quantum gravity coupled to matter NBI-HE-93-3, January 1993.
[33] J. Ambjørn, B. Durhuus, and T. Jonsson, Mod. Phys. Lett.A6 (1991) 1133. · Zbl 1020.83537 · doi:10.1142/S0217732391001184
[34] J. Ambjørn and J. Jurkiewicz, Phys. Lett.B278 (1992) 42. · doi:10.1016/0370-2693(92)90709-D
[35] M.E. Agishtein and A.A. Migdal, Nucl. Phys.B385 (1992) 395. · doi:10.1016/0550-3213(92)90106-L
[36] M.E. Agishtein and A.A. Migdal, Mod. Phys. Lett.A7 (1992) 1039. · Zbl 1020.83534 · doi:10.1142/S0217732392000938
[37] J. Ambjørn, S. Jain, J. Jurkiewicz, and C.F. Kristjansen, Phys. Lett.B305 (1993) 208. · doi:10.1016/0370-2693(93)90109-U
[38] B. Brügmann,Non-uniform Measure in Four-Dimensional simplicial Quantum Gravity, SU-GP-92/9-1; B. Brügmann and E. Marinari,4d Simplicial Quantum Gravity with a Non-Trivial Measure, SU-GP-92/9-2.
[39] J. Ambjørn and S. Varsted, Phys. Lett.B226, (1991) 285.
[40] D. Boulatov and A. Krzywicki, Mod. Phys. Lett.A6 (1991) 3005. · Zbl 1020.83538 · doi:10.1142/S0217732391003511
[41] J. Ambjørn and S. Varsted, Nucl. Phys.B373 (1992) 557. · doi:10.1016/0550-3213(92)90444-G
[42] J. Ambjørn, D. Boulatov, A. Krzywicki, and S. Varsted, Phys. Lett.B276 (1992) 432. · doi:10.1016/0370-2693(92)91663-T
[43] C. Schmidhuber Nucl. Phys.B390 (1993) 188. · doi:10.1016/0550-3213(93)90391-2
[44] I. Antoniadis, P.O. Mazur, and E. Mottola,Scaling behavior of quantum four-geometries. CPTH-A214-1292. Bulletin Board: hep-th@xxx.lanl.gov-9301002.
[45] H. Kawai and M. Ninomiya, Nucl. Phys.B336 (1990) 115. · doi:10.1016/0550-3213(90)90345-E
[46] H. Kawai, Y. Kitazawa, and M. Ninomiya, Nucl. Phys.B393 (1993) 280;Ultraviolet stable fixed point and scaling relations in (2+?)-dimensional quantum gravity, UT-636. Bulletin Board: hep-th@xxx.lanl.gov-9303123. · Zbl 1245.81115 · doi:10.1016/0550-3213(93)90246-L
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.