×

zbMATH — the first resource for mathematics

Global stability of saddle-node bifurcation of a periodic orbit for vector fields. (English) Zbl 0831.58036
In a bifurcation value, the global stability of families of \(C^\infty\) vector fields, which have a generically unfolding saddle-node periodic orbit is studied.
Let \(M\) be a \(C^\infty\) closed manifold, \({\mathcal X}^\infty (M)\) be the space of \(C^\infty\) vector fields on \(M\) and \({\mathcal X}_1^\infty (M)\) be the space of \(C^\infty\) arcs \(\xi: I=[-1, 1]\to {\mathcal X}^\infty (M)\) of vector fields, both endowed with the \(C^\infty\) Whitney topology. Assuming that the arc \(\xi= \{X_\mu \}\), \(\mu\in I\), satisfies the properties:
(1) for each \(\mu\in I\), the non-wandering set of \(X_\mu\) consists of a finite number of critical elements (i.e. singularities and periodic orbits) of \(X_\mu\),
(2) there are no cycles among the critical elements of \(X_\mu\),
(3) there is \(\overline {\mu}\in I\) such that \(X_{\overline {\mu}}\) has a saddle-node periodic orbit,
under certain additional conditions, the author obtains results on the global stability, non-stability of \(\{X_\mu\}\) at a bifurcation value \(\overline {\mu}\) and a modulus of stability for \(X_{\overline {\mu}}\).
The results of the paper generalize some results of I. Malta and J. Palis [Lect. Notes Math. 898, 212-229 (1981; Zbl 0482.58023)] obtained for the case \(\dim M=2\).

MSC:
37G99 Local and nonlocal bifurcation theory for dynamical systems
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] De Melo ( W. ), Palis ( J. ) and Van Strien ( S. ) .- Caracterising diffeomorphisms with modulus of stability one , Lectures Notes in Math. 898 ( 1981 ), pp. 226 - 285 . Zbl 0482.58022 · Zbl 0482.58022
[2] De Melo ( W. ) and Palis ( J. ) .- Moduli of stability for diffeomorphisms , Lectures Notes in Math. 819 ( 1980 ), pp. 315 - 339 . MR 591192 | Zbl 0445.58020 · Zbl 0445.58020
[3] Hirsch ( M. ), Pugh ( C. ) and Shub ( M. ) .- Invariant Manifolds , Lectures Notes in Math. , Springer Verlag , 583 ( 1977 ). MR 501173 | Zbl 0355.58009 · Zbl 0355.58009
[4] Labarca ( R. ) .- Stability of parametrized families of vector fields, Dynamical Systems and Bifurcations Theory , Eds M. I. Camacho, M. J. Pacífico & F. Takens, Pitman Research Notes in Math. , Serie 160 ( 1987 ), pp. 121 - 213 . Zbl 0632.58026 · Zbl 0632.58026
[5] Labarca ( R. ) and Pacífico ( M.J. ) .- Stability of Morse-Smale vector fields on n-manifolds with boundary , Preprint U.F.R.J. , Brazil ( 1988 ). MR 1046625
[6] Malta ( I.P. ) and Palis ( J. ) .- Families of Vector fields with finite modulus of Stability , Lectures Notes in Math. 898 ( 1980 ), pp. 212 - 229 . MR 654891 | Zbl 0482.58023 · Zbl 0482.58023
[7] Moeckel ( R. ) .- Spiralling invariant manifold , J. Diff. Eq. 66 ( 1987 ), pp. 189 - 207 . MR 871994 | Zbl 0634.58016 · Zbl 0634.58016 · doi:10.1016/0022-0396(87)90031-3
[8] Newhouse ( S. ), Palis ( J. ) and Takens ( F. ) .- Bifurcation and Stability of Families of Diffeomorphisms , Publ. Math. I.H.E.S. 57 ( 1983 ), pp. 5 - 71 . Numdam | MR 699057 | Zbl 0518.58031 · Zbl 0518.58031 · doi:10.1007/BF02698773 · numdam:PMIHES_1983__57__5_0 · eudml:103989
[9] Palis ( J. ) and Takens ( F. ) .- Stability of Parametrized families of gradient vector fields , Annals of Math. 118 ( 1983 ), pp. 383 - 421 . MR 727698 | Zbl 0533.58018 · Zbl 0533.58018 · doi:10.2307/2006976
[10] Takens ( F. ) . - Moduli and Bifurcations, non- transversal intersections of invariant manifold of vector fields , Lectures Notes in Math. 799 ( 1980 ), pp. 368 - 384 . MR 585498 | Zbl 0473.58018 · Zbl 0473.58018
[11] Takens ( F. ) .- Global phenomena in bifurcations of dynamical systems with simple recurrence , Jber. der. Dentsche Math. Verein 81 ( 1979 ), pp. 81 - 96 . MR 535099 | Zbl 0419.58012 · Zbl 0419.58012
[12] Takens ( F. ) .- Normal Forms for Certain Singularities of Vector Fields , Ann. Inst. Fourier 23 , n^\circ 2 ( 1973 ), pp. 163 - 195 . Numdam | MR 365620 | Zbl 0266.34046 · Zbl 0266.34046 · doi:10.5802/aif.467 · numdam:AIF_1973__23_2_163_0 · eudml:74122
[13] Van Strien ( S. ) .- One parameter families of vector fields. Bifurcations near saddle connection , Ph. D. Thesis, Utrecht ( 1982 ).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.