[1] |
W. Blaschke, Untersuchungen über die Geometrie der Speere in der Euklidischen Ebene, Monatshefte für Mathematik und Physik 21 (1910) 3--60. · Zbl 41.0728.07
· doi:10.1007/BF01693218 |

[2] |
O. Bottema and B. Roth,Theoretical Kinematics (North-Holland, Amsterdam/New York/ Oxford, 1979). |

[3] |
C. de Boor, K. Höllig and M. Sabin, High accuracy geometric Hermite interpolation, Comp. Aided Geom. Design 4 (1987) 267--278. · Zbl 0646.65004 |

[4] |
T.D. DeRose, Rational Bézier curves and surfaces on projective domains, in:NURBS for Curve and Surface Design, ed. G. Farin (SIAM, Philadelphia, 1991) pp. 35--45. |

[5] |
G. Farin, Rational curves and surfaces, in:Mathematical Methods in CAGD, eds. T. Lyche and L.L. Schumaker (Academic press, 1989) pp. 215--238. |

[6] |
G. Farin,Curves and Surfaces for Computer Aided Geometric Design, 3rd ed. (Academic Press, 1992). · Zbl 0918.68127 |

[7] |
R.T. Farouki, Hierarchical segmentations of algebraic curves and some applications, in:Mathematical Methods in CAGD, eds. T. Lyche and L.L. Schumaker (Academic Press, 1989) pp. 239--248. |

[8] |
R.T. Farouki, Pythagorean-hodograph curves in practical use, in:Geometry Processing for Design and Manufacturing, ed. R.E. Barnhill (SIAM, Philadelphia, 1992) pp. 3--33. · Zbl 0770.41017 |

[9] |
R.T. Farouki, The conformal mapz 2 of the hodograph plane, Comp. Aided Geom. Design 11 (1994) 363--390. · Zbl 0806.65005
· doi:10.1016/0167-8396(94)90204-6 |

[10] |
R.T. Farouki, and C.A. Neff, Hermite interpolation by Pythagorean-hodograph quintics, IBM Research Report RC19234 (1993). · Zbl 0847.68125 |

[11] |
R.T. Farouki and H. Pottmann, Polynomial and rational Pythagorean-hodograph curves reconciled, IBM Research Report RC19571 (1994). · Zbl 0878.68120 |

[12] |
R.T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990) 736--752.
· doi:10.1147/rd.345.0736 |

[13] |
R.T. Farouki and T. Sakkalis, Pythagorean-hodograph space curves, Adv. Comp. Math. 2 (1994) 41--66. · Zbl 0829.65011
· doi:10.1007/BF02519035 |

[14] |
R.T. Farouki and T.W. Sederberg, Genus of the offset to a parabola, IBM Research Report RC18980 (1993). |

[15] |
R.T. Farouki, K. Tarabanis, J.U. Korein, J.S. Batchelder and S.R. Abrams, Offset curves in layered manufacturing, IBM Research Report RC19408 (1993). |

[16] |
J.C. Fiorot and T. Gensane, Characterizations of the set of rational parametric curves with rational offsets, in:Curves and Surfaces in Geometric Design, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (AK Peters, Wellesley, MA, 1994) pp. 153--160. · Zbl 0813.65032 |

[17] |
J. Hoschek, Dual Bézier curves and surfaces, in:Surfaces in Computer Aided Geometric Design, eds. R.E. Barnhill and W. Boehm (North-Holland, 1983) pp. 147--156. |

[18] |
J. Hoschek, Detecting regions with undesirable curvature, Comp. Aided Geom. Design 1 (1984) 183--192. · Zbl 0581.65010
· doi:10.1016/0167-8396(84)90030-X |

[19] |
J. Hoschek and D. Lasser,Grundlagen der geometrischen Datenverarbeitung, 2nd ed. (Teubner, Stuttgart, 1992). · Zbl 0682.68002 |

[20] |
W. Lü, Rational offsets by reparametrizations, preprint (1992). |

[21] |
W. Lü, Rationality of the offsets to algebraic curves and surfaces, preprint (1993). |

[22] |
B. Pham, Offset curves and surfaces: a brief survey, Comp. Aided Design 24 (1992) 223--229.
· doi:10.1016/0010-4485(92)90059-J |

[23] |
H. Pottmann, Rational curves and surfaces with rational offsets, Comp. Aided Geom. Design (1995), to appear. · Zbl 0872.65011 |

[24] |
H. Pottmann, Applications of the dual Bézier representation of rational curves and surfaces, in:Curves and Surfaces in Geometric Design, eds. P.J. Laurent, A. L. Méhauté and L.L. Schumaker (AK Peters, Wellesley, MA, 1994) pp. 377--384. · Zbl 0813.65047 |

[25] |
W. Wunderlich, Algebraische Böschungslinien dritter und vierter Ordnung, Sitzungsberichte der Österreichischen Akademie der Wissenschaften 181 (1973) 353--376. · Zbl 0273.53003 |