×

zbMATH — the first resource for mathematics

On the small-\(\mu\) theorem. (English) Zbl 0831.93021
Summary: Counterexamples to a commonly quoted statement of the small-\(\mu\) theorem are exhibited. We exhibit plants \(P\) with unit ‘\(\mu\)-norm’ that cannot be destabilized by any real-rational stable proper structured uncertainty of size one. A detailed proof of a correct statement is provided. It includes the case where the uncertainty is not constrained to be real- rational.

MSC:
93B35 Sensitivity (robustness)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B36 \(H^\infty\)-control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balas, G.J.; Doyle, J.C.; Glover, K.; Packard, A.; Smith, R., ()
[2] Boyd, S.; Desoer, C.A., Subharmonic functions and performance bounds on linear time-invariant feedback systems, IMA J. math. control inf., 2, 153-170, (1985)
[3] Doyle, J.C., Analysis of feedback systems with structured uncertainties, (), 242-250
[4] Doyle, J.C.; Wall, J.E.; Stein, G., Performance and robustness analysis for structured uncertainty, (), 629-636
[5] Khargonekar, P.P.; Georgiou, T.T.; Pascoal, A.M., On the roubst stabilization of time-invariant plants with unstructured uncertainty, IEEE trans. autom. control, AC-32, 201-207, (1987) · Zbl 0616.93062
[6] Kishore, A.P.; Pearson, J.B., Uniform stability and performance in \(H\)_{∞}, (), 1991-1996 · Zbl 1101.05040
[7] Parkard, A.; Doyle, J.C., The complex structured singular value, Automatica, 29, 71-109, (1993) · Zbl 0772.93023
[8] Packard, A.; Pandey, P., Continuity properties of the real/complex structured singular value, IEEE trans. autom. control, AC-38, 415-428, (1993) · Zbl 0791.93023
[9] Tits, A.L., The small μ theorem without real-rational assumption, (), to appear
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.