Infinite hypergroups having a finite number of proper hyperproducts. (Hypergroupes infinis ayant un nombre fini d’hyperproduits propres.) (French) Zbl 0832.20085

For non-commutative hypergroups a theorem of P. Corsini (1980) is proved: If \((H, \cdot)\) is an infinite hypergroup with finite set of hyperproducts of cardinality greater than 1, then there exists \((a,b) \in H^2\) with \(\text{card} (a\cdot b) = \text{card }H\). Moreover, all hypergroups having at most two proper hyperproducts are determined. Therefore, these hypergroups include the very thin ones.


20N20 Hypergroups
Full Text: DOI


[1] Corsini P.,Contributo alla teoria degli ipergruppi, Atti Soc. Pelor. Sc. Mat. Fis. Nat. (1980).
[2] Corsini P.,Ipergruppi semiregolari e regolari, Rend. Sem. Mat. Univ. Politecn. Torino40 (1982), 35–46.
[3] Gutan C., Gutan M.,Hypergroupes commutatifs infinis, Atti Sem. Mat. Fis. Univ. Modena,33 (1984), 155–159. · Zbl 0591.20068
[4] Howie J. M.,An Introduction to Semigroup Theory, Academic Press (1976). · Zbl 0355.20056
[5] Scott W. R.,Group Theory, Prentice Hall (1964).
[6] Sureau Y.,Contribution à la théorie des hypergroupes et hypergroupes opérant transitivement sur un ensemble, Thèse de doctorat, Université de Clermont-Ferrand II (1980).
[7] Vougiouklis T.,The very thin hypergroups and the S-construction, Combinatorics ’88, vol. 2 (1991), 471–477. · Zbl 0945.20524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.