Herzog, Gerd On ordinary differential equations in Fréchet spaces. (Über gewöhnliche Differentialgleichungen in Frécheträumen.) (German) Zbl 0832.34055 Karlsruhe: Math. Fak., Univ. Karlsruhe, 65 S. (1992). Let \(F\) be a real Fréchet space and denote by \(f: [0, T]\times F\to F\) a continuous mapping. The author considers the initial value problem \((*)\) \(y'(t)= f(t, y(t))\), \(y(0)= y_0\in F\) in \(F\) and investigates the existence and non-existence as well as the uniqueness problems to \((*)\). The difference to corresponding results in the Banach space case is pointed out. Reviewer: R.Manthey (Jena) Cited in 1 Document MSC: 34G20 Nonlinear differential equations in abstract spaces 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations Keywords:Fréchet space; initial value problem; non-existence; uniqueness; Banach space PDF BibTeX XML Cite \textit{G. Herzog}, Über gewöhnliche Differentialgleichungen in Frécheträumen. Karlsruhe: Math. Fak., Univ. Karlsruhe (1992; Zbl 0832.34055) OpenURL