The spectral problem for the \(q\)-Knizhnik-Zamolodchikov equation and continuous \(q\)-Jacobi polynomials. (English) Zbl 0832.35106

Summary: The spectral problem for the \(q\)-Knizhnik-Zamolodchikov equations for \(U_q(\widehat{sl_2})\) \((0< q< 1)\) at arbitrary non-negative level \(k\) is considered. The case of two-point functions in the fundamental representation is studied in detail. The scattering states are given explicitly in terms of continuous \(q\)-Jacobi polynomials, and the \(S\)- matrix is derived from their asymptotic behavior. The level zero \(S\)- matrix is closely connected with the kink-antikink \(S\)-matrix for the spin-\({1\over 2}\) XXZ antiferromagnet. An interpretation of the latter in terms of scattering on (quantum) symmetric spaces is discussed. In the limit of infinite level we observe connections with harmonic analysis on \(p\)-adic groups with the prime \(p\) given by \(p= q^{- 2}\).


35P25 Scattering theory for PDEs
82B23 Exactly solvable models; Bethe ansatz
35Q58 Other completely integrable PDE (MSC2000)
81U20 \(S\)-matrix theory, etc. in quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
Full Text: DOI arXiv


[1] Freund, P.G.O., Zabrodin, A.V.: Phys. Lett.B294, 347 (1992)
[2] Freund, P.G.O., Zabrodin, A.V.: Phys. Lett.B311, 103 (1993)
[3] Frenkel, I., Reshetikhin, N.Yu.: Commun. Math. Phys.146, 1 (1992) · Zbl 0760.17006
[4] Knizhnik, V.G., Zamolodchikov, A.B.: Nucl. Phys.B247, 83 (1984) · Zbl 0661.17020
[5] Bargmann, V., Wigner, E.P.: Proc. Nat. Acad. Sci. USA34, 211 (1946) · Zbl 0030.42306
[6] Faddeev, L.D., Takhtajan, A.L.: Zapiski Nauchn. Sem. LOMI109, 134 (1981)
[7] Kirillov, A.N., Reshetikhin, N.Yu.: J. PhysicsA20, 1565 (1987)
[8] Macdonald, I.G.: In: Nevai, P. (ed.) Orthogonal Polynomials: Theory and Practice. Dordrecht: Kluwer Academic, 1990; Macdonald, I.G.: Queen Mary College preprint 1989 · Zbl 0669.92001
[9] Freund, P.G.O.: In: Clavelli, L., Harms, B. (eds.) Superstrings and Particle Theory. Singapore: World Scientific, 1990
[10] Zabrodin, A.V.: Mod. Phys. Lett.A7, 441 (1992) · Zbl 1020.82536
[11] Freund, P.G.O., Zabrodin, A.V.: Commun. Math. Phys.147, 277 (1992) · Zbl 0760.17007
[12] Matsuo, A.: Invent. Math.110, 95 (1992) · Zbl 0801.35131
[13] Cherednik, I.: Preprint RIMS-776 (1991); Duke Math. J.68, 171 (1992)
[14] Erdélyi, A.: Higher Transcendental Functions, v. II. New York: McGraw-Hill, 1953 · Zbl 0052.29502
[15] Davies, B., Foda, O., Jimbo, M., Miwa, T., Nakayashiki, A.: Commun. Math. Phys.151, 89 (1993); Idzumi, M., Iohara, K., Jimbo, M., Miwa, T., Nakashima, T., Tokihiro, T.: RIMS preprint 1992 · Zbl 0769.17020
[16] Rogers, L.J.: Proc. Lond. Math. Soc.26, 318 (1895)
[17] Askey, R., Ismail, M.E.H. In: Erdös, P. (ed.) Studies in Pure Math. Basel: Birkhäuser, 1983
[18] Gasper, G., Rahman, M.: Basic hypergeometric series. Cambridge: Cambridge University Press, 1990 · Zbl 0695.33001
[19] Cherednik, I.: Commun. Math. Phys.150, 109 (1992) · Zbl 0849.17025
[20] Noumi, M., Mimachi, K.: Proc. Japan Acad. Ser. A66, 146 (1990) · Zbl 0707.33010
[21] Freund, P.G.O., Zabrodin, A.V.: Phys. Lett.B284, 283 (1992)
[22] Koornwinder, T.: J. Math. Anal. and Appl.148, 44 (1990) · Zbl 0713.33010
[23] Mautner, F.: Am. J. Math.80, 441 (1958); Cartier, P.: Proc. Symp. Pure Math., vol26, Providence, RI: A.M.S., 1973 · Zbl 0092.12501
[24] Bruhat, F., Tits, J.: Publ. Math. IHES41, 5 (1972)
[25] Matsuo, A.: Commun. Math. Phys.151, 263 (1993) · Zbl 0776.17014
[26] Rahman, M.: SIAM J. Math. Anal.17, 1280 (1986) · Zbl 0599.33004
[27] Rahman, M.: Canad. J. Math.33, 255 (1981)
[28] Askey, R., Wilson, J.A.: Memoirs Amer. Math. Soc.319 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.