×

zbMATH — the first resource for mathematics

Triangular finite elements of HCT type and class \(C^ \rho\). (English) Zbl 0832.65003
Let \(\tau\) be some triangulation of a bounded polygonal domain \(\Omega \subset\mathbb{R}^2\). Let \(\tau_3\) be the Hsieh-Clough-Tocher (HCT) subtriangulation of \(\tau\) obtained by joining an interior point of each triangle to its vertices. For a smooth function \(u\), the authors construct a piecewise polynomial function \(v \in C^\rho (\Omega)\) of degree \(n = 3\rho\) for \(\rho\) odd and \(n = 3\rho + 1\) for \(\rho\) even, on the subtriangulation \(\tau_3\); the function \(v\) interpolates the derivatives of \(u\) up to order \(\rho\) at the vertices of \(\tau\).

MSC:
65D05 Numerical interpolation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
41A05 Interpolation in approximation theory
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Alfeld, A bivariateC 2 Clough-Tocher scheme, Comp. Aided Geom. Design 1 (1984) 257–267. · Zbl 0597.65005 · doi:10.1016/0167-8396(84)90012-8
[2] P. Alfeld and L.L. Schumaker, On the dimension of bivariate spline spaces of smoothnessr and degreed=3r+1. Numer. Math. 57 (1990) 651–661. · Zbl 0725.41012 · doi:10.1007/BF01386434
[3] J.H. Argyis, I. Fried and D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method, Aeronaut. J. Roy. Aeronaut. Soc. 72 (1968) 701–709.
[4] K. Bell, A refined triangular plate bending element, Int. J. Numer. Meth. Eng. 1 (1969) 101–122. · doi:10.1002/nme.1620010108
[5] C. de Boor, B-net basics, in:Geometric Modelling: Algorithms and New Trends, ed. G.E. Farin (SIAM Publ., Philadelphia, 1987) pp. 131–148.
[6] C.K. Chui and M.J. Lai, Multivariate vertex splines and finite elements, J. Approx. Theory 60 (1990) 245–343. · Zbl 0702.41017 · doi:10.1016/0021-9045(90)90063-V
[7] P.G. Ciarlet and P.A. Raviart, General Lagrange and Hermite interpolation in \(\mathbb{R}\) n with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972) 177–199. · Zbl 0243.41004 · doi:10.1007/BF00252458
[8] P.G. Ciarlet, Sur l’élément de Clough et Tocher, RAIRO, Anal. Numer R 2 (1974) 19–27. · Zbl 0306.65070
[9] P.G. Ciarlet,The Finite Elements Methods for Elliptic Problems (North-Holland, Amsterdam, 1977).
[10] P.G. Ciarlet, Interpolation error estimates for the reduced Hsieg-Clough-Tocher triangles, Math. Comp. 32 (1978) 335–344. · Zbl 0378.65010 · doi:10.1090/S0025-5718-1978-0482249-1
[11] P.G. Ciarlet, Basic error estimates for elliptic problems, in:Handbook of Numerical Analysis, Vol. II:Finite Element Methods (part 1), ed. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1991) pp. 19–351. · Zbl 0875.65086
[12] R.W. Clough and J.L. Tocher, Finite element stiffness matrices for analysis of plates in bending, in:Proc. Conf. on Matrix Methods in Structural Mechanics (Wright Patterson A.F.B., Ohio, 1965).
[13] G. Farin, A modified Clough-Tocher interpolant, Comp. Aided Geom. Design 2 (1985) 19–27. · Zbl 0586.65007 · doi:10.1016/0167-8396(85)90003-2
[14] G. Farin, Triangular Bernstein-Bézier patches, Comp. Aided Geom. Design 3 (1986) 83–127. · doi:10.1016/0167-8396(86)90016-6
[15] A.K. Ibrahim and L.L. Schumaker, Superspline spaces of smoothnessr and degreedr+2, Constr. Approx. 7 (1991) 401–423. · Zbl 0739.41011 · doi:10.1007/BF01888166
[16] M. Laghchim-Lahlou and P. Sablonnière,C r finite elements of HCT, PS and FVS types, in:Proc. 5th Int. Symp. on Numerical Methods in Engineering, Vol. 2, ed. R. Gruber, J. Periaux and R.P. Shaw (Springer, Berlin, 1989) pp. 163–168.
[17] M. Laghchim-Lahou and P. Sablonnière, Composite quadrilateral finite elements of classC r in:Mathematical Methods in CAGD, ed. T. Lyche and L.L. Schumaker (Academic Press, New York, 1989) pp. 413–418.
[18] M. Laghchim-Lahlou and P. Sablonnière, CompositeC r -triangular finite elements of PS type on a three direction mesh, in:Curves and Surfaces, ed. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, 1991) pp. 275–278. · Zbl 0736.41003
[19] M. Laghchim-Lahlou, Eléments finis composites de classeC k dans \(\mathbb{R}\)2, Thèse de Doctorat, INSA de Rennes (1991). · Zbl 0736.41003
[20] M. Laghchim-Lahlou and P. Sablonnière, Quadrilateral finite elements of FVS type and classC \(\rho\) (submitted). French version: rapport LANS 35, INSA de Rennes (1991).
[21] A. Le Méhauté, Taylor interpolation of ordern at the vertices of a triangle. Applications for Hermite interpolation and finite elements, in:Approximation Theory and Applications, ed. Z. Ziegler (Academic Press, New York, 1981) pp. 171–185.
[22] A. Le Méhauté, Construction of surfaces of classC k on a domain 2 after triangulation, in:Multivariate Approximation Theory II, ed. W. Schempp and K. Zeller (Birkhäuser, Basel, 1982) pp. 223–240.
[23] A. Le Méhauté, Interpolation et approximation par des fonctions polynômiales par morceaux dans \(\mathbb{R}\) n , Thèse de Doctorat ès-sciences, Université de Rennes (1984).
[24] A. Le Méhauté, Interpolation with minimizing triangular finite element in \(\mathbb{R}\)2, in:Methods of Functional Analysis in Approximation Theory, ed. C.A. Micchelli, S.V. Pai and B.V. Limaye (Birkhäuser, Basel, 1985) pp. 59–66.
[25] P. Percell, On cubic and quartic Clough-Tocher finite elements, SIAM J. Numer. Anal. 13 (1976) 100–103 · Zbl 0319.65064 · doi:10.1137/0713011
[26] P. Sablonnière, Bases de Bernstein et approximants splines, Thèse de Doctorat ès-sciences, Université de Lille (1982).
[27] P. Sablonnière, Composite finite elements of classC k , J. Comp. Appl. Math. 12 & 13 (1985) 541–550. · Zbl 0587.41004 · doi:10.1016/0377-0427(85)90047-0
[28] P. Sablonnière, Eléments finis triangulaires de degré 5 et de classC 2, in:Computers and Computing, ed. P. Chenin, C. Di Crescenzo and F. Robert (Wiley-Masson, 1986) pp. 111–115.
[29] P. Sablonnière, Composite finite elements of classC 2, in:Topics in Multivariate Approximation Theory, ed. C.K. Chui, L.L. Schumaker and F. Utreras (Academic Press, New York, 1987) pp. 207–217.
[30] L.L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, in:Multivariate Approximation Theory, ed. W. Schempp and K. Zeller (Birkhäuser, Basel, 1979) pp. 396–412.
[31] L.L. Schumaker, On super splines and finite elements, SIAM J. Numer. Anal. 26 (1989) 997–1005. · Zbl 0679.41008 · doi:10.1137/0726055
[32] A. Ženišek, A general theorem on triangular finiteC m -elements, RAIRO, Anal. Numer. 2 (1974) 119–127.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.