×

zbMATH — the first resource for mathematics

Surface quasi-geostrophic dynamics. (English) Zbl 0832.76012
From the authors’ summary: The dynamics of quasi-geostrophic flow with uniform potential vorticity reduces to the evolution of buoyancy, or potential temperature, on horizontal boundaries. There is a formal resemblance to two-dimensional flow with surface temperature playing the role of vorticity, but a different relationship between the flow and the advected scalar creates several distinctive features. A series of examples are described which highlight some of these features: the evolution of an elliptic vortex; the start-up vortex shed by flow over a mountain; the instability of temperature filaments; the ‘edge wave’ critical layer; and mixing in an overturning edge wave.
In addition to its geophysical relevance, the ubiquitous generation of secondary instabilities and the possibility of finite-time collapse make this system a potentially important, numerically tractable testbed for turbulence theories.

MSC:
76B47 Vortex flows for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0960-0779(94)90140-6 · Zbl 0823.76034
[2] DOI: 10.1016/0960-0779(94)90139-2
[3] Pierrehumbert, Geophys. Astrophys. Fluid Dyn. 59 pp 285– (1991)
[4] Dritschel, J. Fluid Mech 206 pp 193– (1989)
[5] DOI: 10.1016/0167-7977(89)90004-X
[6] DOI: 10.1017/S0022112088003088 · Zbl 0645.76024
[7] DOI: 10.1063/1.868050 · Zbl 0826.76014
[8] DOI: 10.1103/PhysRevLett.72.1475
[9] DOI: 10.1175/1520-0469(1978)035 2.0.CO;2
[10] Weiss, Phys. Rev. 40 pp 2579– (1988)
[11] Bennett, Proc. R. Soc. Edin. 91A pp 185– (1982) · Zbl 0502.35034
[12] DOI: 10.1017/S002211209100352X · Zbl 0728.76044
[13] Bennett, Mathematika 27 pp 287– (1980)
[14] DOI: 10.1175/1520-0485(1993)023 2.0.CO;2
[15] DOI: 10.1175/1520-0469(1976)033 2.0.CO;2
[16] DOI: 10.1017/S0022112093001569 · Zbl 0774.76021
[17] DOI: 10.1175/1520-0469(1984)041 2.0.CO;2
[18] DOI: 10.1103/PhysRevLett.65.2137 · Zbl 1050.82553
[19] DOI: 10.1017/S0022112084001750 · Zbl 0561.76059
[20] Knobloch, Phys. Rev. 36 pp 1522– (1987)
[21] Kill Worth, J. Fluid Mech 161 pp 449– (1985)
[22] DOI: 10.1175/1520-0469(1994)051 2.0.CO;2
[23] DOI: 10.1175/1520-0469(1982)039 2.0.CO;2
[24] DOI: 10.1175/1520-0469(1975)032 2.0.CO;2
[25] DOI: 10.1175/1520-0469(1992)049 2.0.CO;2
[26] Eady, Tellus 1 pp 33– (1949)
[27] DOI: 10.1175/1520-0469(1990)047 2.0.CO;2
[28] Rose, J. Phys. Paris 47 pp 441– (1978)
[29] DOI: 10.1175/1520-0469(1992)049 2.0.CO;2
[30] DOI: 10.1175/1520-0469(1992)049 2.0.CO;2
[31] DOI: 10.1017/S0022112082002250 · Zbl 0497.76032
[32] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043
[33] DOI: 10.1017/S0022112085002361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.