zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global periodic solutions for a differential delay system modeling a microbial population in the chemostat. (English) Zbl 0833.34069
The author studies the differential delay system modeling a microbial population in the chemostat $$\dot s(t)= 1- s(t)- P(s(t))u(t),\quad \dot u(t)= [- 1+ P(S((t- \tau))].\tag1$$ The author gives a sufficient conditions that the washout steady state ($u= 0$, $S= 1$) is globally stable and establishes sufficient conditions for the global existence of a periodic solution by proving the existence of nontrivial periodic points of an appropriate map. The author also presents an explicit application to Michaelis-Menten kinetics.

34K13Periodic solutions of functional differential equations
92D25Population dynamics (general)
34C25Periodic solutions of ODE
Full Text: DOI