×

On an example of phase-space tunneling. (English) Zbl 0833.34088

Summary: A typical example of phase space tunneling, which is related to the Born- Oppenheimer approximation and has been studied by Martinez, is considered. An upper bound on the width of the resonance, which seems to be optimal, is proved. The main idea is to construct a suitable canonical transformation, and then to use the standard Agmon-type exponential estimate. In order to define resonances, we use a local distortion method.

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] J. Asch and P. Duclos , An elementary model of dynamical tunneling , in Differential Equations with Applications to Mathematical Physics (F. AMES, J. V., HEROD, E. HARREL eds.), Academic Press , 1993 , pp. 1 - 11 . MR 1207143 | Zbl 0789.35127 · Zbl 0789.35127
[2] D. Babbit and E. Balslev , Local distortion technique and unitarity of the S-matrix for the 2-body problem , J. Math. Anal. Appl. , Vol. 54 , 1976 , pp. 316 - 347 . MR 413860
[3] J.M. Combes , P. Duclos , M. Klein and R. Seiler , The shape resonance , Commun. Math. Phys. , Vol. 110 , 1987 , pp. 215 - 236 . Article | MR 887996 | Zbl 0629.47044 · Zbl 0629.47044 · doi:10.1007/BF01207364
[4] H.L. Cycon , R.G. Froese , W. Kirsch and B. Simon , Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry , Springer Verlag , Berlin , 1987 . MR 883643 | Zbl 0619.47005 · Zbl 0619.47005
[5] G.B. Folland , Harmonic Analysis in Phase Space , Princeton Univ, Press , Princeton , 1989 . MR 983366 | Zbl 0682.43001 · Zbl 0682.43001
[6] B. Helffer and J. Sjöstrand , Multiple wells in the semiclassical limit, I ., Comm. P.D.E. , Vol. 9 , 1984 , pp. 337 - 408 . MR 740094 | Zbl 0546.35053 · Zbl 0546.35053 · doi:10.1080/03605308408820335
[7] B. Helffer and J. Sjöstrand , Résonances en limite semi-classique , Mem. Soc. Math. , France , Vol. 24/25 , 1986 , pp. 1 - 228 . Numdam | MR 871788 | Zbl 0631.35075 · Zbl 0631.35075
[8] L. Hörmander , The Analysis of Linear Partial Differential Operators , Vol. III , Springer Verlag , Berlin , 1985 . MR 404822 | Zbl 0601.35001 · Zbl 0601.35001
[9] W. Hunziker , Distortion analyticity and molecular resonance curbes , Ann. Inst. H. Poincaré , Vol. 45 , 1986 , pp. 339 - 358 . Numdam | MR 880742 | Zbl 0619.46068 · Zbl 0619.46068
[10] T. Kato , Perturbation Theory for Linear Operators , 2 nd ed., Springer Verlag , Berlin , 1976 , MR 407617 · Zbl 0342.47009
[11] M. Klein , A. Martinez , R. Seiler and X.P. Wang , On the Born-Oppenbeiraer expansion for polyatomic molecules , Commun. Math. Phys. , Vol. 143 , 1992 , pp. 607 - 639 . Article | MR 1145603 | Zbl 0754.35099 · Zbl 0754.35099 · doi:10.1007/BF02099269
[12] A. Martinez , Estimates on complex interactions in phase space , preprint 1992 , Université Paris-Nord (To appear in Mathematische Nachrichten ). MR 1226487 · Zbl 0836.35135
[13] A. Martinez , Precise exponential estimates in adiabatic theory , preprint 1993 , Université Paris-Nord (To appear in J. Math. Phys. ). MR 1240530 · Zbl 0812.35108
[14] A. Martinez , Résonances dans l’approximation de Born-Oppenheimer , I., J. Diff. Eq. , Vol. 91 , 1991 , pp. 204 - 234 ; II. Commun, Math. Phys. , Vol. 135 , 1991 , pp. 517 - 530 . Article | MR 1091576 | Zbl 0737.35046 · Zbl 0737.35046 · doi:10.1016/0022-0396(91)90139-Z
[15] S. Nakamura , Tunneling estimates in momentum space and scattering , preprint 1993 , University of Tokyo (To appear in Spectral and Scattering Theory (ed. M. IKAWA), Marcel Decker , New York , 1994 ). · Zbl 0827.35097
[16] S. Nakamura , On Martinez’ method of phase space tunneling , preprint, 1994 , University of Tokyo (To appear in Rev. Math. Phys. ). MR 1326141 · Zbl 0842.35145
[17] B. Simon , Semiclassical analysis of low-lying eigenvalues, II. Tunneling , Ann. Math. , Vol. 120 , 1984 , pp. 89 - 118 . MR 750717 | Zbl 0626.35070 · Zbl 0626.35070 · doi:10.2307/2007072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.