×

zbMATH — the first resource for mathematics

Further remarks on the lower semicontinuity of polyconvex integrals. (English) Zbl 0833.49013
Summary: We study some lower semicontinuity properties of polyconvex integrals of the form \[ \int_\Omega f(M(\nabla u))dx, \] where \(\Omega\subset \mathbb{R}^n\), \(u: \Omega\to \mathbb{R}^m\), and \(M(\nabla u)\) denotes the family of the determinants of all minors of the gradient matrix \(\nabla u\). In particular, we study the lower semicontinuity along sequences converging strongly in \(L^1(\Omega, \mathbb{R}^m)\) when the integrand depends only on the minors of \(\nabla u\) up to a given order, and the lower semicontinuity along sequences converging strongly in \(L^1(\Omega, \mathbb{R}^n)\) and bounded in \(W^{1, n-1}(\Omega, \mathbb{R}^n)\) in the special case \(m= n\).

MSC:
49J45 Methods involving semicontinuity and convergence; relaxation
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals, Calc. Var. (to appear). · Zbl 0810.49014
[2] Ball, J. M.; Murat, F., W^{1,p}-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., Vol. 66, 439-253, (1986) · Zbl 0549.46019
[3] Buttazzo, G., Semicontinuity, relaxation and integral representation problems in the calculus of variations, Pitman Res. Notes in Math., Vol. 207, (1989), Longman Harlow · Zbl 0669.49005
[4] Dacorogna, B., Direct methods in the calculus of variation, (1989), Springer-Verlag Berlin · Zbl 0676.46035
[5] Dacorogna, B.; Marcellini, P., Semicontinuité pour des intégrands polyconvexes sans continuité des déterminants, C. R. Acad. Sci. Paris, Sér. I, Vol. 311, 393-396, (1990) · Zbl 0723.49007
[6] G. Dal Maso and C. Sbordone, Weak lower semicontinuity of policonvex integrals: a borderline case, Math. Z. (to appear). · Zbl 0822.49010
[7] Federer, H., Geometric measure theory, (1969), Springer-Verlag Berlin · Zbl 0176.00801
[8] Giaquinta, M.; Modica, G.; Souček, J., Cartesian currents, weak diffeomorphisms and nonlinear elasticity, Arch. Rational Mech. Anal., Vol. 109, 385-392, (1990) · Zbl 0712.73009
[9] Giaquinta, M.; Modica, G.; Souček, J., The Dirichlet integral for mappings between manifolds: Cartesian currents and homology, Math. Ann., Vol. 294, 325-386, (1992) · Zbl 0762.49018
[10] Giusti, E., Minimal surfaces and functions of bounded variation, (1984), Birkhäuser Boston · Zbl 0545.49018
[11] Goffman, C.; Serrin, J., Sublinear functions of measures and variational integrals, Duke Math. J., Vol. 31, 159-178, (1964) · Zbl 0123.09804
[12] Maly, J., Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc., Vol. 123A, 681-691, (1993), Edinburgh · Zbl 0813.49017
[13] Reshetnyak, Yu. G., Weak convergence of completely additive vector functions on a set, Siberian Math. J., Vol. 101, 139-167, (1961)
[14] Rockafellar, T., Convex analysis, (1970), Princeton University Press Princeton · Zbl 0193.18401
[15] Schwartz, L., Théorie des distributions, (1966), Hermann Paris
[16] Simon, L. M., Lectures on geometric measure theory, Proc. of the Centre for Mathematical Analysis, Vol. 3, (1983), Australian National University Canberra · Zbl 0546.49019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.