Cyclic extensions of degree \(\ell\) over an \(\ell\)-regular number field. (Extensions cycliques de degré \(\ell\) de corps de nombres \(\ell\)-réguliers.) (French) Zbl 0834.11049

Let \(l\) be an odd prime. Any number field \(F\) is called \(l\)-regular if the \(l\)-part of the kernel of the regular symbols in \(K_2 (F)\) is trivial. Let \(K\) be an \(l\)-regular number field containing the \(l\)-th roots of unity. The main objective is to determine all cyclic extensions \(L/K\) of degree \(l\) such that \(L\) is also \(l\)-regular, and to classify these extensions according to the ramification index of the wild place in \(L/K\) and the \(l\)-adic value of the relative class number \(h_L/ h_K\). The case \(l=2\) has been dealt with earlier by R. Berger [Arch. Math. 59, 427-435 (1992; Zbl 0778.11062)]. The method is based on results of G. Gras and J.-F. Jaulent [Math. Z. 202, 343-365 (1989; Zbl 0704.11040)].
Reviewer: V.Ennola (Turku)


11R70 \(K\)-theory of global fields
11R18 Cyclotomic extensions
11R20 Other abelian and metabelian extensions
Full Text: DOI Numdam EuDML EMIS


[1] Berger, R., Class number parity and unit signature, Arch. Math.59 (1993), 427-435. · Zbl 0778.11062
[2] Jaulent, J.-F., L’arithmétique des l-extensions (Thèse), Publ. Math. Fac. Sci. Besançon, Théor. Nombres (1984/ 1985, 1985/1986 (1986)), 13-43, 163-178. · Zbl 0601.12002
[3] Jaulent, J.-F. & Nguyen, T.QUANG DO, Corps p-rationnels, corps p-réguliers, et ramification restreinte, J. Théor. Nombres Bordeaux5 (1994), 343-363. · Zbl 0957.11046
[4] Gras, G. et Jaulent, J.-F., Sur les corps de nombres réguliers, Math.Z.202 (1989), 343-365. · Zbl 0704.11040
[5] Serre, J.-P., Corps Locaux, Hermann, Paris (1968), 17-34, 211-238. · Zbl 0137.02601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.