Lê Dũng Tráng; Weber, Claude Rational-fibre polynomials and the two-variable Jacobian conjecture. (Polynômes à fibres rationnelles et conjecture jacobienne à 2 variables.) (French) Zbl 0834.14007 C. R. Acad. Sci., Paris, Sér. I 320, No. 5, 581-584 (1995). A new geometric proof of the following particular case of the Jacobian conjecture [first proved by R. C. Heitmann, J. Pure Appl. Algebra 64, No. 1, 35-72 (1990; Zbl 0704.13010)] is given: If a polynomial mapping \((f,g) : \mathbb{C}^2 \to \mathbb{C}^2\) has a non-zero constant Jacobian and \(f\) has only rational and irreducible fibers, then \((f,g)\) is an automorphism of \(\mathbb{C}^2\). The proof is based on theorems (which have not been published so far) on properties of the exceptional divisor of the resolution of the indetermination points of the rational mapping generated by \(f\) on \(\mathbb{P}^2\). Reviewer: T.Krasiński (Łódź) Cited in 6 Documents MSC: 14H37 Automorphisms of curves 13F20 Polynomial rings and ideals; rings of integer-valued polynomials Keywords:rational curve; Jacobian conjecture; polynomial mapping PDF BibTeX XML Cite \textit{Lê Dũng Tráng} and \textit{C. Weber}, C. R. Acad. Sci., Paris, Sér. I 320, No. 5, 581--584 (1995; Zbl 0834.14007)