×

Spectral sequence of weights in Hyodo-Kato cohomology. (La suite spectrale des poids en cohomologie de Hyodo-Kato.) (French) Zbl 0834.14010

This very interesting paper treats a \(p\)-adic analogue of the following result of J. Steenbrink [Invent. Math. 31, 229-257 (1976; Zbl 0312.14007)] in complex Hodge theory. Let \(X\) be a complex analytic Kähler manifold, \(D\) the complex unit disk and \(f : X \to D\) a proper morphism of analytic spaces, smooth away from 0, and such that its fibre at the origin \(Y\) is a divisor with normal crossings whose components are smooth Kähler manifolds. The logarithm of the monodromy acts as a nilpotent endomorphism on the sheaf of limiting cycles \(R \Psi_f (\mathbb{C})\), and therefore induces on it a finite increasing filtration called the monodromy filtration. On the other hand, the cohomology of limiting cycles \(H^i (Y,R \Psi_f (\mathbb{C}))\) has a structure of mixed Hodge structure, whose weight filtration is the abutment filtration of the weight spectral sequence. Steenbrink proved that this spectral sequence degenerates at \(E_2\), and that the weight filtration on \(H^i (Y,R \Psi_f (\mathbb{C}))\) coincides with the monodromy filtration.
In the paper under review, the author constructs a Hyodo-Steenbrink complex that allows him to prove, in certain cases, an analogue of the above theorem for the cohomology of a proper and flat scheme with semistable reduction over a complete discrete valuation field. – Let \(K\) be such a field with ring of integers \(A\) and residue field \(\kappa\) perfect of characteristic \(p > 0\). Let \(W\) denote the ring of Witt vectors with coefficients in \(\kappa\), \(K_0\) the field of fractions of \(W\) and \(\sigma\) the Frobenius automorphism of \(W\). Let \(X\) be a proper and flat \(A\)-scheme with semistable reduction, and let \(Y\) be its special fibre which is supposed to be a sum of smooth divisors. To such an object O. Hyodo and K. Kato [“Semistable reduction and crystalline cohomology with logarithmic poles” in: Périodes \(p\)-adiques, Sémin. Bures sur-Yvette 1988, Exposé V, Astérisque 223, 221-268 (1994)] associated groups of “crystalline cohomology with logarithmic poles”, \(H^* (Y^\times, W^\times)\). These are \(W\)-modules of finite type together with a \(\sigma\)-semilinear isogeny \(\Phi\), called Frobenius, and a nilpotent linear monodromy operator \(N\). If \(X/A\) is smooth, \(H^* (Y^\times, W^\times)\) is the usual crystalline cohomology and the monodromy is 0. If \(K\) is of characteristic 0 there is a canonical isomorphism \(H^* (Y^\times, W^\times) \otimes K \simeq H^*_{\text{DR}} (X_K/K)\), where \(X_K\) is the generic fibre of \(X\).
Hyodo and Kato also proved that, as is the case for the usual crystalline cohomology, this crystalline cohomology for logarithmic schemes may be calculated by means of the de Rham-Witt complex \(W^\bullet_{\omega_Y}\). – The author modifies their construction (so that he does not need to assume that \(K\) is of unequal characteristic) and shows, as his key technical result (section 3), that \(W^\bullet_{\omega_Y}\), viewed as an object in the derived category \(D(Y_{\text{ét}}, W)\), underlies an object \((WA^\bullet, P_k)\), which he calls the complex of Hyodo-Steenbrink, in the filtered derived category, where \((P_k)\) is a finite increasing filtration, called the weight filtration, and \(WA^\bullet\) is endowed with a nilpotent endomorphism \(\nu\) lifting the monodromy on \(W^\bullet_{\omega_Y}\). This allows him to build a weight spectral sequence abutting to \(H^* (Y^\times, W^\times)\), analogous to that of Steenbrink. \(H^* (Y^\times, W^\times) \otimes K_0\) then has a weight filtration coming from this spectral sequence and also a monodromy filtration determined by \(N\). This is the \(p\)-adic analogue of the complex situation studied by Steenbrink, so that the author naturally arrives at conjecture 3.24: If \(Y\) is projective the weight spectral sequence degenerates at \(E_2\) modulo torsion. Conjecture 3.27: If \(Y\) is the reduction of a projective semistable \(X/A\) the weight filtration agrees with the monodromy filtration.
We must now assume, as the author does, that the residual field \(\kappa\) is finite. He then proves (theorem 3.32) that \((H^* (Y^\times, W^\times)\)/torsion, \(\Phi)\) is a mixed crystal in the sense of Faltings, and hence that conjecture 3.24 is true. He is also able to prove, after studying the duality pairing in this situation, that conjecture 3.27 holds for curves (theorem 5.3) and for surfaces (corollary 6.2.3).
As applications, he shows (proposition 5.9) that the conjecture of Fontaine, saying that an abelian variety \(A/K\) has good reduction if and only if the Galois representation on its Tate module is crystalline, holds if \(\kappa\) is finite and \(A\) is potentially a product of Jacobians. He also gives an explicit formula, in terms of the Rham cohomology, for the local factor at a prime of semistable reduction of the Hasse-Weil zeta function of a surface.

MSC:

14F30 \(p\)-adic cohomology, crystalline cohomology
14K15 Arithmetic ground fields for abelian varieties
55T25 Generalized cohomology and spectral sequences in algebraic topology
14F40 de Rham cohomology and algebraic geometry
14G20 Local ground fields in algebraic geometry

Citations:

Zbl 0312.14007
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Artin and G. Winters, Degenerate fibres and stable reduction of curves , Topology 10 (1971), 373-383. · Zbl 0221.14018
[2] P. Berthelot, Cohomologie cristalline des schémas de caractéristique \(p>0\) , Lecture Notes in Mathematics, vol. 407, Springer-Verlag, Berlin, 1974. · Zbl 0298.14012
[3] C. H. Clemens, Degeneration of Kähler manifolds , Duke Math. J. 44 (1977), no. 2, 215-290. · Zbl 0353.14005
[4] P. Deligne, Équations différentielles à points singuliers réguliers , Lecture Notes in Mathematics, vol. 163, Springer-Verlag, Berlin, 1970. · Zbl 0244.14004
[5] P. Deligne, La conjecture de Weil. II , Inst. Hautes Études Sci. Publ. Math. (1980), no. 52, 137-252. · Zbl 0456.14014
[6] P. Deligne, Théorie de Hodge. II , Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 5-57. · Zbl 0219.14007
[7] P. Deligne and L. Illusie, Relèvements modulo \(p^ 2\) et décomposition du complexe de de Rham , Invent. Math. 89 (1987), no. 2, 247-270. · Zbl 0632.14017
[8] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus , Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 75-109. · Zbl 0181.48803
[9] F. El Zein, Théorie de Hodge des cycles évanescents , Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 107-184. · Zbl 0592.14005
[10] G. Faltings, \(F\)-isocrystals on open varieties: results and conjectures , The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 219-248. · Zbl 0736.14004
[11] G. Faltings, Crystalline cohomology of semistable curves, and \(p\)-adic Galois-representations , J. Algebraic Geom. 1 (1992), no. 1, 61-81. · Zbl 0813.14012
[12] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate , Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 3-80. · Zbl 0429.14016
[13] J.-M. Fontaine, Sur certains types de représentations \(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate , Ann. of Math. (2) 115 (1982), no. 3, 529-577. JSTOR: · Zbl 0544.14016
[14] J. M. Fontaine and L. Illusie, \(p\)-adic periods: a survey , prépublication, Université d’Orsay, 1990. · Zbl 0836.14010
[15] M. Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique , Mém. Soc. Math. France (N.S.) 114 (1985), no. 21, 87. · Zbl 0615.14011
[16] M. Gros, Cohomologie de de Rham et réduction semi-stable, l’aspect rigide analytique , Mai 1990, notes de travail.
[17] P. Griffiths and W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results , Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, Bombay, 1975, pp. 31-127. · Zbl 0355.14003
[18] F. Guillén and V. Navarro Aznar, Sur le théorème local des cycles invariants , Duke Math. J. 61 (1990), no. 1, 133-155. · Zbl 0722.14002
[19] R. Hartshorne, Local cohomology , A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin, 1967, Lecture Notes in Mathematics, No. 41, vi+106. · Zbl 0185.49202
[20] O. Hyodo, A cohomological construction of Swan representations over the Witt ring. I , Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 8, 300-303. · Zbl 0699.14026
[21] O. Hyodo, On the de Rham-Witt complex attached to a semi-stable family , Compositio Math. 78 (1991), no. 3, 241-260. · Zbl 0742.14015
[22] O. Hyodo and K. Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles , prépublication, 1989. · Zbl 0852.14004
[23] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline , Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501-661. · Zbl 0436.14007
[24] L. Illusie, Ordinarité des intersections complètes générales , The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 376-405. · Zbl 0728.14021
[25] L. Illusie, Cohomologie de de Rham et cohomologie étale \(p\)-adique (d’après G. Faltings, J.-M. Fontaine et al.) , Astérisque (1990), no. 189-190, Exp. No. 726, 325-374. · Zbl 0736.14005
[26] L. Illusie, Réalisation \(l\)-adique de l’accouplement de monodromie d’après A. Grothendieck , Astérisque (1991), no. 196-197, 7, 27-44 (1992), dans Courbes Modulaire et Courbes de Shimura. · Zbl 0781.14011
[27] L. Illusie, Finiteness, duality, and Künneth theorems in the cohomology of the de Rham-Witt complex , Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 20-72. · Zbl 0538.14013
[28] L. Illusie and M. Raynaud, Les suites spectrales associées au complexe de de Rham-Witt , Inst. Hautes Études Sci. Publ. Math. (1983), no. 57, 73-212. · Zbl 0538.14012
[29] U. Jannsen, On the \(l\)-adic cohomology of varieties over number fields and its Galois cohomology , Galois groups over \(\mathbf Q\) (Berkeley, CA, 1987) eds. I. Ihara, K. Ribet, and J.-P. Serre, Math. Sci. Res. Inst. Publ., vol. 16, Springer-Verlag, New York, 1989, pp. 315-360. · Zbl 0703.14010
[30] K. Kato, Logarithmic structures of Fontaine-Illusie , Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191-224. · Zbl 0776.14004
[31] K. Kato, Semi-stable reduction and \(p\)-adic étale cohomology , prépublication. · Zbl 1038.81060
[32] K. Kato, Logarithmic degeneration and Dieudonne theory , prépublication. · Zbl 1038.81060
[33] N. Katz and W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields , Invent. Math. 23 (1974), 73-77. · Zbl 0275.14011
[34] G. Laffaille, Groupes \(p\)-divisibles et modules filtrés: le cas peu ramifié , Bull. Soc. Math. France 108 (1980), no. 2, 187-206. · Zbl 0453.14021
[35] S. Lang, Abelian varieties , Interscience Tracts in Pure and Applied Mathematics. No. 7, Interscience Publishers, Inc., New York, 1959. · Zbl 0098.13201
[36] D. Mumford, Abelian varieties , Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970. · Zbl 0223.14022
[37] A. Ogus, papiers secrets .
[38] M. Rapoport and Th. Zink, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik , Invent. Math. 68 (1982), no. 1, 21-101. · Zbl 0498.14010
[39] M. Rapoport, On the bad reduction of Shimura varieties , Automorphic forms, Shimura varieties, and \(L\)-functions, Vol. II (Ann Arbor, MI, 1988) eds. L. Clozel and J. S. Milne, Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 253-321. · Zbl 0716.14010
[40] M. Raynaud, Réalisation de de Rham des \(1\)-motifs , en préparation. · Zbl 0207.51501
[41] J. Steenbrink, Limits of Hodge structures , Invent. Math. 31 (1975/76), no. 3, 229-257. · Zbl 0303.14002
[42] M. Saito, Modules de Hodge polarisables , Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849-995 (1989). · Zbl 0691.14007
[43] M. Saito and S. Zucker, The kernel spectral sequence of vanishing cycles , Duke Math. J. 61 (1990), no. 2, 329-339. · Zbl 0756.32020
[44] J.-P. Serre and J. Tate, Good reduction of abelian varieties , Ann. of Math. (2) 88 (1968), 492-517. JSTOR: · Zbl 0172.46101
[45] A. Grothendieck, Modèle de Néron et monodromie , dans Groupes de monodromie en géometrie algébrique, Lecture Notes in Math, vol. 288, Springer-Verlag, Berlin, 1972, pp. 313-523. · Zbl 0248.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.