×

The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties. (English) Zbl 0834.17003

Let \(G\) be a reductive group over an algebraically closed field of characteristic 0, and \({\mathfrak g}= \text{Lie } G\). Given a finite- dimensional rational \(G\) module \(V\) the author studies two algebraic varieties (generalized commuting varieties) associated with \(V\). The first one is the zero fiber of the moment map \[ \varphi: V\times V^*\to {\mathfrak g}^*, \qquad \varphi (v,f) (g)= f(gv). \] The second one is the zero fiber of the map \[ \psi: {\mathfrak g}\times V\to V, \qquad \psi(g, v)= gv. \] He obtains several theorems that extend classical results of the invariant theory of the adjoint representation of \(G\) to those representations of \(G\) whose invariant theory resembles that of \(\text{Ad}: G\to \text{gl} ({\mathfrak g})\). In particular, he proves that if the action \(G:V\) is stable locally free, and \(V\) has finitely many instable \(G\)-orbits, then the moment map \(\varphi\) is surjective, equidimensional, and all its fibers are irreducible reduced complete intersections.
At the end of the paper the author formulates three open problems. Problem (2) looks very challenging indeed: Prove that the algebraic variety \(\{x,y\in {\mathfrak g}\times {\mathfrak g}\mid [x,y ]=0\}\) is normal.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B45 Lie algebras of linear algebraic groups

References:

[1] N. Bourbaki , ” Algèbre ”, Paris, Masson, 1970. · Zbl 0211.02401
[2] J.R. Brennan , M.V. Pinto and W.V. Vasconcelos , The Jacobian module of a Lie algebra , Trans. Amer. Math. Soc. 321 (1990), 183-196. · Zbl 0712.17004 · doi:10.2307/2001597
[3] J. Herzog , A. Simis and W.V. Vasconcelos , On the arithmetic and homology of algebras of linear type , Trans. Amer. Math. Soc. 283 (1984), 661-683. · Zbl 0541.13005 · doi:10.2307/1999153
[4] V.G. Kac , Some remarks on nilpotent orbits , J. Algebra 64 (1980), 190-213. · Zbl 0431.17007 · doi:10.1016/0021-8693(80)90141-6
[5] B. Kostant and S. Rallis , Orbits and representations associated with symmetric spaces , Amer. J. Math. 93 (1971), 753-809. · Zbl 0224.22013 · doi:10.2307/2373470
[6] F. Knop , Über die Glattheit von Quotientenabbildungen , Manuscripta Math. 56 (1986), 419-427. · Zbl 0585.14033 · doi:10.1007/BF01168503
[7] H. Kraft , Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik D1 , Vieweg-Verlag, Braunschweig 1984. · Zbl 0669.14003
[8] D. Luna and R.W. Richardson , A generalization of the Chevalley restriction theorem , Duke Math. J. 46 (1979), 487-496. · Zbl 0444.14010 · doi:10.1215/S0012-7094-79-04623-4
[9] D.I. Panyushev , On orbit spaces of finite and connected linear groups , Math. USSR-Izv. 20 (1983), 97-101. · Zbl 0517.20019 · doi:10.1070/IM1983v020n01ABEH001341
[10] V.S. Pyasetskii , Linear Lie groups acting with finitely many orbits , Functional Anal. Appl. 9 (1975), 351-353. · Zbl 0326.22004 · doi:10.1007/BF01075892
[11] R.W. Richardson , Commuting varieties of semisimple Lie algebras and algebraic groups , Compositio Math. 38 (1979), 311-327. · Zbl 0409.17006
[12] A. Simis and W.V. Vasconcelos , Krull dimension and integrality of symmetric algebras , Manuscripta Math. 61 (1988), 63-78. · Zbl 0687.13010 · doi:10.1007/BF01153583
[13] E.B. Vinberg , The Weyl group of a graded Lie algebra , Math. USSR-Izv. 10 (1976), 463-495. · Zbl 0371.20041 · doi:10.1070/IM1976v010n03ABEH001711
[14] E.B. Vinberg , Complexity of actions of reductive groups , Functional. Anal. Appl. 20 (1986), 1-11. · Zbl 0601.14038 · doi:10.1007/BF01077308
[15] E.B. Vinberg and V.L. Popov , ” Invariant theory ”, in: Contemporary problems in Math. Fundamental aspects , v. 55. Moscow, VINITI, 1989 (Russian). (English translation in: Encyclopaedia of Math. Sci., v. 55, Berlin-Springer, 1994.) · Zbl 0789.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.