×

Asymptotics for the minimization of a Ginzburg-Landau functional. (English) Zbl 0834.35014

Authors’ abstract: Let \(\Omega \subset \mathbb{R}^2\) be a smooth bounded simply connected domain. Consider the functional \[ E_\varepsilon (u)= {1\over 2} \int_\Omega |\nabla u|^2+ {1\over {4\varepsilon^2}} \int_\Omega (|u|^2- 1)^2 \] on the class \(H^1_g= \{u\in H^1 (\Omega; \mathbb{C})\); \(u=g\) on \(\partial \Omega\}\) where \(g: \partial \Omega\to \mathbb{C}\) is a prescribed smooth map with \(|g|=1\) on \(\partial \Omega\) and \(\deg (g, \partial \Omega) =0\). Let \(u_\varepsilon\) be a minimizer for \(E_\varepsilon\) on \(H^1_g\). We prove that \(u_\varepsilon\to u_0\) in \(C^{1, \alpha} (\overline {\Omega})\) as \(\varepsilon\to 0\), where \(u_0\) is identified. Moreover \(|u_\varepsilon- u_0 |_{L^\infty} \leq C\varepsilon^2\).
Reviewer: J.Q.Liu (Beijing)

MSC:

35B25 Singular perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J60 Nonlinear elliptic equations
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bethuel, F., Brezis, H., Hélein, F.: Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau. C.R. Acad. Sci. Paris314, 891-895 (1992) · Zbl 0773.49003
[2] Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices (to appear)
[3] Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1982 · Zbl 1042.35002
[4] Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une sphère. C.R. Acad. Sci. Paris311, 519-524 (1990) · Zbl 0728.35014
[5] Kosterlitz, J.M., Thouless, D.J.: Two dimensional physics. In: Brewer, D.F. (ed.) Progress in low temperature physics, vol. VIIB. Amsterdam: North-Holland 1978
[6] Morrey, C.B.: The problem of Plateau on a Riemannian manifold. Ann. Math.49, 807-851 (1948); Morrey, C.B.: Multiple integrals in the calculus of variations. (Grundlehren math. Wiss., vol. 130) Berlin, Heidelberg, New York: Springer 1966 · Zbl 0033.39601
[7] Nelson, D.R.: Defect mediated phase transitions. In: Domb, C., Lebowitz, J.L. (eds) Phase transitions and critical phenomena, vol. 7. New York: Academic Press 1983
[8] Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa13, 116-162 (1958) · Zbl 0088.07601
[9] Saint-James, D., Sarma, G., Thoma, E.J.: Type II superconductivity. New York: Pergamon Press 1969
[10] Stampacchia, G.: Equations elliptiques du second ordre avec coéfficients discontinus. Presses de l’Université de Montréal 1966
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.