×

Relativity, spherical functions and the hypergeometric equation. (English) Zbl 0834.43011

In the context of special relativity, the so-called chronogeometric equation is studied: it is a generalization of the hypergeometric equation and it reduces to it in the limit \(c \to 0\). Thanks to the Klein-Gordon calculus (a relativistic generalization of the Weyl calculus), this study amounts to the deformation of the theory of spherical functions on rank-one symmetric spaces.

MSC:

43A90 Harmonic analysis and spherical functions
83A05 Special relativity
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] R. Dautray and J.L. Lions , Analyse mathématique et calcul numérique pour les sciences et les techniques , Collection CEA , Paris , 1985 . Zbl 0642.35001 · Zbl 0642.35001
[2] J. Dieudonné , Calcul infinitésimal , Hermann , Paris , 1980 . MR 226971 | Zbl 0497.26004 · Zbl 0497.26004
[3] J. Faraut , Analyse harmonique sur les espaces hermitiens symétriques de rang un , CIMPA, Université de Nancy , 1980 .
[4] R. Gangolli and V.S. Varadarajan , Harmonic Analysis of Spherical Functions on Real Reductive Groups , Springer-Verlag , Berlin , 1988 . MR 954385 | Zbl 0675.43004 · Zbl 0675.43004
[5] K.I. Gross and R.A. Kunze , Fourier Bessel Transforms and Holomorphic Discrete Series , Lecture Notes in Math. , No. 266 , 1972 , pp. 79 - 122 . MR 486318 | Zbl 0242.22015 · Zbl 0242.22015
[6] K.I. Gross and R.A. Kunze , Bessel Functions and Representation Theory I, II , J. Funct. Anal. , Vol. 22 , 1976 , pp. 73 - 105 ; ibid. ,, Vol. 25 , 1977 , pp. 1 - 49 . MR 415214 | Zbl 0322.43014 · Zbl 0322.43014
[7] S. Helgason , Groups and Geometric Analysis , Acad. Press , New York , 1984 . MR 754767 | Zbl 0543.58001 · Zbl 0543.58001
[8] L. Jager , Fonctions de Mathieu et calcul de Klein-Gordon , Thèse , Université de Reims , 1994 .
[9] A.W. Knapp , Representation Theory of Semi-Simple Groups , Princeton University Press , 1986 . MR 855239 | Zbl 0604.22001 · Zbl 0604.22001
[10] W. Magnus , F. Oberhettinger and R.P. Soni , Formulas and Theorems for the Special Functions of Mathematical Physics , 3 rd edition, Springer-Verlag , Berlin , 1966 . MR 232968 | Zbl 0143.08502 · Zbl 0143.08502
[11] E. Mathieu , Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique , Journal de Liouville , Vol. 13 , 1968 , p. 137 . Article | JFM 01.0354.02 · JFM 01.0354.02
[12] W. Miller , Symmetry and separation of variables , Addision-Wesley , 1977 . MR 460751 | Zbl 0368.35002 · Zbl 0368.35002
[13] J. Nourrigat , Méthodes asymptotiques, Cours de maîtrise , Université de Reims , 1990 (to appear).
[14] L. Pukanszky , The Plancherel Formula for the Universal Covering Group of SL(R, 2) , Math. Annalen , Vol. 156 , 1964 , pp. 96 - 143 . MR 170981 | Zbl 0171.33903 · Zbl 0171.33903
[15] M. Reed and B. Simon , Methods of Modern Mathematical Physics , Vol. 2 , Acad. Press , 1975 . · Zbl 0308.47002
[16] L. Schwartz , Théorie des distributions ,, Vol. 2 , Hermann , Paris , 1959 . MR 209834 · Zbl 0085.09703
[17] A. Unterberger , L’oscillateur relativiste et les fonctions de Mathieu , Bull. Soc. Math. France , Tome 121 , No. 4 , 1993 , pp. 479 - 508 . Numdam | MR 1254750 | Zbl 0797.58034 · Zbl 0797.58034
[18] A. Unterberger , Quantification relativiste , Mémoires de la Soc. Math. France , No. 44 - 45 , Paris , 1991 . Numdam | MR 1101973 | Zbl 0745.35057 · Zbl 0745.35057
[19] A. Unterberger , Les opérateurs métadifférentiels , Lectures Notes in Physics , No. 126 , 1980 , pp. 205 - 241 . MR 579751 | Zbl 0452.35121 · Zbl 0452.35121
[20] A. Unterberger and J. Unterberger , La série discrète de SL (2, R) et les opérateurs pseudo-différentiels sur une demi-droite , Ann.Sci. Ec. Norm. Sup. , Tome 17 , 1984 , pp. 83 - 116 . Numdam | MR 744069 | Zbl 0549.35119 · Zbl 0549.35119
[21] Z.X. Wang and D.R. Guo , Special Functions , World Scientific ( Singapore ), 1989 . MR 1034956 | Zbl 0724.33001 · Zbl 0724.33001
[22] E.T. Whittaker and G.N. Watson , A course of modern Analysis , 4 th edition, Cambridge Univ. Press , 1965 . MR 1424469 · JFM 45.0433.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.