zbMATH — the first resource for mathematics

Anosov flows and non-Stein symplectic manifolds. (English) Zbl 0834.53031
Summary: We simplify and generalize McDuff’s construction of symplectic 4- manifolds with disconnected boundary of contact type in terms of the linking pairing defined on the dual of 3-dimensional Lie algebras. This leads us to an observation that an Anosov flow gives rise to a bi-contact structure, i.e. a transverse pair of contact structures with different orientations, and the construction turns out to work for 3-manifolds which admit Anosov flows with smooth invariant volume. Finally, new examples of bi-contact structures are given and related dynamical problems around bi-contact structures are raised.

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
37D99 Dynamical systems with hyperbolic behavior
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI Numdam EuDML
[1] D. BENNEQUIN, Topologie symplectique, convexité holomorphe et structures de contact, d’après Y. Eliashberg, D. McDuff et al., Séminaire Bourbaki, 725 (1989-1990). · Zbl 0755.32009
[2] Y. ELIASHBERG, Topological characterization of Stein manifolds of dimension > 2, International J. Math., 1 (1990), 19-46. · Zbl 0699.58002
[3] Y. ELIASHBERG, Contact 3-manifolds twenty years Since J. Martinet’s work, Ann. Inst. Fourier, Grenoble, 42 (1-2) (1991), 165-192. · Zbl 0756.53017
[4] Y. ELIASHBERG and M. GROMOV, Convex symplectic manifolds, Proc. Symp. Pure Math. A.M.S., 52 (2) (1991), 135-162. · Zbl 0742.53010
[5] P. FOULON, Preprint in preparation.
[6] H. GEIGES, Preprints.
[7] E. GHYS, Flots d’Anosov dont LES feuilletages stables sont différentiables, Ann. Scient. École Norm. Sup., 20 (1987), 251-270. · Zbl 0663.58025
[8] S. GOODMAN, Dehn surgery and Anosov flows in proc. geom. dynamics conf., Springer Lecture Notes in Mathematics, 1007 (1983). · Zbl 0532.58021
[9] R.C. GUNNING and H. ROSSI, Analytic functions of several complex variables, Prentice-Hall Inc., Englewood Cliffs N.J., 1965. · Zbl 0141.08601
[10] M. HANDEL and W.P. THURSTON, Anosov flows on new 3-manifolds, Invent. Math., 59 (1980), 95-103. · Zbl 0435.58019
[11] M. HIRSCH, C. Pugh and M. SHUB, Invariant manifolds, Springer Lecture Notes in Mathematics, 583 (1977). · Zbl 0355.58009
[12] F. LAUDENBACH, Orbites périodiques et courbes pseudo-holomorphes, application à la conjecture de Weinstein en dimension 3, d’après H. Hofer et al., Séminaire Bourbaki, 786 (1993-1994). · Zbl 0853.57013
[13] D. MCDUFF, Examples of simply-connected non-Kählerian manifolds, J. Diff. Geom., 20 (1984), 267-277. · Zbl 0567.53031
[14] D. MCDUFF, Symplectic manifolds with contact type boundaries, Invent. Math., 103 (1991), 651-671. · Zbl 0719.53015
[15] Th. PETERNELL, Pseudoconvexity, the Levi problem and vanishing theorems, Encyclopeadia of Mathematical Sciences, 74, Several complex variables VII, Chapter VIII, Springer-Verlag, Berlin (1994). · Zbl 0811.32011
[16] W.P. THURSTON, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., 55 (1976), 467-468. · Zbl 0324.53031
[17] A. WEINSTEIN, On the hypotheses of Rabinowtz’s periodic orbit theorems, J. Diff. Eq., 33 (1979), 353-358. · Zbl 0388.58020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.