Mishura, Yu. S. Stochastic differential equations in the plane that contain strong semimartingales. (English. Russian original) Zbl 0834.60063 Theory Probab. Math. Stat. 45, 77-85 (1992); translation from Teor. Veroyatn. Mat. Stat., Kiev 45, 79-88 (1991). Summary: Sufficient conditions are obtained for the existence and uniqueness of a solution of a stochastic equation of the form \(x_t = H_t + ((f \circ x) \cdot z)_t\), \(t \in R^2_+\), where \(H_t\) and \(z_t\) are strong semimartingales, and \(f\) is a weakly predictable function. MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60G48 Generalizations of martingales Keywords:existence and uniqueness of a solution of a stochastic equation; weakly predictable function PDFBibTeX XMLCite \textit{Yu. S. Mishura}, Theory Probab. Math. Stat. 45, 1 (1991; Zbl 0834.60063); translation from Teor. Veroyatn. Mat. Stat., Kiev 45, 79--88 (1991)