Bardadym, T. A.; Ivanov, A. V. An asymptotic expansion of the distribution of a functional of the least square estimator. (English. Russian original) Zbl 0834.62016 Theory Probab. Math. Stat. 47, 1-8 (1993); translation from Teor. Jmovirn. Mat. Stat. 47, 3-10 (1992). Summary: The authors investigate the nonlinear regression model \(x_j= g(j, \theta)+ \varepsilon_j\), \(j=1, \dots, n\), \(\theta\in \Theta \subset \mathbb{R}^q\), \(q\geq 1\), and present an asymptotic expansion of the distribution of the functional \((L_n (\theta)- L_n (\widehat {\theta}_n))/ \sigma^2\), where \[ L_n (\theta)= \sum_{j=1}^n [x_j- g(j, \theta) ]^2, \] \(\widehat {\theta}_n\) is the least square estimator of an unknown parameter \(\theta\in \Theta\) constructed from the observations \(x_1, \dots, x_n\), and \(\sigma^2\) is the variance of the observation error \(\varepsilon\). MSC: 62E20 Asymptotic distribution theory in statistics 62J02 General nonlinear regression 62F12 Asymptotic properties of parametric estimators Keywords:asymptotic expansion; least square estimator PDFBibTeX XMLCite \textit{T. A. Bardadym} and \textit{A. V. Ivanov}, Theory Probab. Math. Stat. 47, 1 (1992; Zbl 0834.62016); translation from Teor. Jmovirn. Mat. Stat. 47, 3--10 (1992)