Girko, V. L.; Stepakhno, I. V. The asymptotics of Stieltjes transforms of singular spectral functions. (English. Russian original) Zbl 0834.62018 Theory Probab. Math. Stat. 46, 39-45 (1993); translation from Teor. Jmovirn. Mat. Stat. 46, 42-50 (1992). Summary: We study the asymptotics of the Stieltjes transforms of the spectral functions of the eigenvalues of a matrix \(A= (a_{ij})\), \(i=1, \dots, n\), \(j=1, \dots, m\), by the method of general statistical analysis assuming known only the random variables \(X_i\), \(i=1, \dots, s\), which are independent observations of the matrix \(A+ \Xi\), where \(\Xi\) is a stochastic matrix. MSC: 62E20 Asymptotic distribution theory in statistics 62H10 Multivariate distribution of statistics 15A18 Eigenvalues, singular values, and eigenvectors 15B51 Stochastic matrices Keywords:G-estimation of eigenvalues; Cauchy distribution; martingale; Stieltjes transforms; spectral functions PDFBibTeX XMLCite \textit{V. L. Girko} and \textit{I. V. Stepakhno}, Theory Probab. Math. Stat. 46, 1 (1992; Zbl 0834.62018); translation from Teor. Jmovirn. Mat. Stat. 46, 42--50 (1992)