×

zbMATH — the first resource for mathematics

The unique limit of the Glimm scheme. (English) Zbl 0835.35088
The author considers a nonlinear hyperbolic system of conservation laws and shows that, in some circumstances, if there exists a standard Riemann semigroup \(S_t\), a function \(u\) is a viscosity solution of the system if and only if \(u(t, \cdot)= S_t u(0, \cdot)\).
Reviewer: I.Vrabie (Iaşi)

MSC:
35L65 Hyperbolic conservation laws
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Bressan, Contractive metrics for nonlinear hyperbolic systems, Indiana Univ. Math. J. 37 (1988), 409-421. · Zbl 0632.35041 · doi:10.1512/iumj.1988.37.37021
[2] A. Bressan, Unique solutions for a class of discontinuous differential equations, Proc. Amer. Math. Soc. 104 (1988), 772-778. · Zbl 0692.34004 · doi:10.1090/S0002-9939-1988-0964856-0
[3] A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal Appl. 170 (1992), 414-432. · Zbl 0779.35067 · doi:10.1016/0022-247X(92)90027-B
[4] A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction waves, J. Diff. Eqs. 106 (1993), 332-366. · Zbl 0802.35095 · doi:10.1006/jdeq.1993.1111
[5] A. Bressan, A locally contractive metric for systems of conservation laws, Annali Scuola Norm. Sup. Pisa, to appear.
[6] A. Bressan & R. M. Colombo, The semigroup generated by 2\(\times\)2 systems of conservation laws, Arch. Rational Mech. Anal., to appear. · Zbl 0849.35068
[7] C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972), 33-41. · Zbl 0233.35014 · doi:10.1016/0022-247X(72)90114-X
[8] C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 107 (1989), 127-155. · Zbl 0714.35046 · doi:10.1007/BF00286497
[9] R. DiPerna, Singularities of solutions of nonlinear hyperbolic conservation laws, Arch. Rational Mech. Anal. 60 (1975), 75-100. · Zbl 0324.35062 · doi:10.1007/BF00281470
[10] R. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Diff. Eqs. 20 (1976), 187-212. · Zbl 0314.58010 · doi:10.1016/0022-0396(76)90102-9
[11] R. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27-70. · Zbl 0519.35054 · doi:10.1007/BF00251724
[12] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715. · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[13] J. Glimm & P. Lax, Decay of solutions of systems of hyperbolic conservation laws, Amer. Math. Soc. Memoir 101, Providence, 1970. · Zbl 0204.11304
[14] J. Goodman & Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rational Mech. Anal. 121 (1992), 235-265. · Zbl 0792.35115 · doi:10.1007/BF00410614
[15] S. Ku?kov, First order quasilinear equations with several space variables, Math. USSR Sbornik 10 (1970), 217-273. · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156
[16] P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl Math. 10 (1957), 537-566. · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[17] T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57 (1975), 135-148. · Zbl 0376.35042 · doi:10.1007/BF01625772
[18] T.-P. Liu, Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 30 (1977), 585-610. · Zbl 0357.35059 · doi:10.1002/cpa.3160300505
[19] T. P. Liu, Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws, Comm. Pure Appl. Math. 30 (1977), 767-796. · Zbl 0358.35014 · doi:10.1002/cpa.3160300605
[20] V. J. Ljapidevskii, On correctness classes for nonlinear hyperbolic systems, Soviet Math. Dokl. 16 (1975), 1505-1509. · Zbl 0329.35042
[21] B. J. Lucier, Error bounds for the methods of Glimm, Godunov and LeVeque, SIAM J. Num. Anal. 22 (1985), 1074-1081. · Zbl 0584.65059 · doi:10.1137/0722064
[22] G. Pimbley, A semigroup for Lagrangian 1D isentropic flow, in Transport theory, invariant imbedding and integral equations, G. Webb ed., M. Dekker, New York, 1989. · Zbl 0689.76003
[23] N. H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc. 117 (1993), 1125-1139. · Zbl 0799.35153 · doi:10.1090/S0002-9939-1993-1120511-X
[24] B. L. Ro?destvenskii & N. Yanenko, Systems of quasilinear equations, Amer. Math. Soc. Translations of Mathematical Monographs, Vol. 55, 1983.
[25] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983. · Zbl 0508.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.