zbMATH — the first resource for mathematics

Almost commuting unitary elements in purely infinite simple \(C^*\)- algebras. (English) Zbl 0835.46054
It is shown that, for any \(\varepsilon> 0\), there exists \(\delta> 0\) such that for any pair of unitaries (selfadjoints), \(u\), \(v\) in any purely infinite simple \(C^*\)-algebra \(A\), if \(|uv- vu|< \delta\), then there exists a pair of commuting unitaries (selfadjoints) \(U\), \(V\in A\) satisfying \(|u- U|< \varepsilon\) and \(|v- V|< \varepsilon\).

46L05 General theory of \(C^*\)-algebras
46L80 \(K\)-theory and operator algebras (including cyclic theory)
47C15 Linear operators in \(C^*\)- or von Neumann algebras
15A15 Determinants, permanents, traces, other special matrix functions
Full Text: DOI EuDML
[1] [APT] Akemann, C.A., Pedersen, G.K. and Tomiyama, J., Multipliers ofC *-algebras, J. Funct. Anal.13 (1973), 277-301 · Zbl 0258.46052
[2] [AS] Akemann, C.A. and Shultz, F. PerfectC *-algebras, Memoir Amer. Math. Soc., vol. 55 no. 326 (1985)
[3] [BD] Berg, I.D. and Davidson, K.R., Almost commuting matrices and a quantitative version of Brown-Douglas-Fillmore theorem, Acta Math.166 (1991), 121-161 · Zbl 0731.47009
[4] [Bn] Brown, L.G., Stable isomorphism of hereditary subalgebras ofC *-algebras, Pacific J. Math.71 (1977), 335-348
[5] [Bn1] Brown, L.G., The universal coefficient theorem forExt and quasidiagonality, Proc. International Conf. on Operator Algebras and Group Representations, Neptun, Romania, 1980
[6] [BDF1] Brown, L.G., Douglas, R. and Fillmore, P., Unitary equivalence modulo the compact operators and extensions ofC *-algebras, Proc. Conf. on Operator Theory, Springer Lecture Notes in Math.345 (1973), 58-128
[7] [BDF2] Brown, L.G., Douglas, R. and Fillmore, P.: ExtensionsC *-algebras andK-homology, Ann. of Math.105 (1977), 265-324 · Zbl 0376.46036
[8] [BO] Berg I.D. and Olsen, C.L., A note on almost commuting operators, Proc. Roy. Irish Acad. sect. A81 (1981), 43-47 · Zbl 0491.47016
[9] [BP] Brown, L.G. and Pedersen, G.K.,C *-algebras of real rank zero. J. Funct. Anal.99 (1991), 131-149 · Zbl 0776.46026
[10] [Ch] Choi, M.-D., Almost commuting matrices need not be nearly commuting, Proc. Amer. Math. Soc.102 (1988), 529-533 · Zbl 0649.15005
[11] [Cu1] Cuntz, J., SimpleC *-algebras generated by isometries, Comm. Math. Phys.57 (1977), 173-185 · Zbl 0399.46045
[12] [Cu2] Cuntz, J.,K-theory for certainC *-algebras, Ann. Math.131 (1981), 181-197 · Zbl 0446.46052
[13] [DL] Dadarlat, M. and Loring, T.A., TheK-theory of abelian subalgebras of AF-algebras, J. reine angew. Math.432 (1992), 39-55
[14] [D] Davidson, K.R., Almost commuting Hermitian matrices, Math. Scand.56 (1985), 222-240 · Zbl 0563.15010
[15] [Eff] Effros, E., Dimensions andC *-algebras, CBMS Regional Conf. Ser. in Math. no. 46, Amer. Math. Soc., Providence, R.I., 1981
[16] [E1] Elliott, G.A., Derivations of matroidC *-algebras, II, Ann. Math.100 (1974), 407-422 · Zbl 0296.46062
[17] [E2] Elliott, G.A., The classification ofC *-algebras of real rank zero, J. Reine. Angew. Math.443 (1993), 179-219 · Zbl 0809.46067
[18] [EGLP] Elliott, G.A., Gong, G., Lin, H. and Pasnicu, C., AbelianC *-subalgebras ofC *-algebras of real rank zero and inductive limitC *-algebras, preprint, 1993
[19] [EL] Elliott, G.A. and Loring, T.A., AF embeddings ofC(T 2) with prescribedK-theory, J. Funct. Anal.103 (1992), 1-25 · Zbl 0756.46039
[20] [ER] Elliott, G.A. and M. R?rdam, Classification of certain infinite simpleC *-algebras, II, preprint
[21] [ExL1] Exel, R. and Loring, T.A., Almost commuting unitary matrices, Proc. Amer. Math. Soc.106 (1989), 913-915 · Zbl 0677.15003
[22] [ExL2] Exel, R., and Loring, T.A., Invariants of almost commuting unitaries, J. Funct. Anal.95 (1991), 364-376 · Zbl 0748.46031
[23] [H] Halmos, P.R., Some unsolved problems of unknown depth about operators on Hilbert space, Proc. Roy. Soc. Edinburgh sect. A76 (1976), 67-76 · Zbl 0346.47001
[24] [Lin1] Lin, H., Exponential rank ofC *-algebras with real rank zero and the Brown-Pedersen conjectures, J. Funct. Anal.114 (1993), 1-11 · Zbl 0812.46054
[25] [Lin2] Lin, H., Approximation by normal elements with finite spectra in simple AF-algebras, J. Operator Theory,31 (1994), 83-98 · Zbl 0846.46038
[26] [Lin3] Lin, H., Approximation by normal elements with finite spectra inC *-algebras of real rank zero, Pacific J. Math. (to appear)
[27] [Lin4] Lin, H., Almost normal elements, International J. Math.5 (1994), 765-778 · Zbl 0810.46065
[28] [Lin5] Lin, H., Homomorphisms fromC(X) intoC *-algebras preprint
[29] [Lin6] Lin, H., Almost commuting unitaries and classification of purely infinite simpleC *-algebras, preprint
[30] [LZ] Lin, H. and Zhang, S., Infinite simpleC *-algebras, J. Funct. Anal.100 (1991), 221-231 · Zbl 0774.46029
[31] [Lor0] Loring, T.A., Berg’s technique for pseudo-actions with applications to AF-algebras, Canad. J. Math.43 (1991), 119-157 · Zbl 0747.46048
[32] [Lor1] Loring, T.A.,K-theory and asymptotically commuting matrices, Canad. J. Math.40 (1988), 197-216 · Zbl 0647.18007
[33] [Lor2] Loring T.A., Normal elements ofC *-algebras of real rank zero without finitespectrum approximants, preprint
[34] [PS] Paschke, W. and Salinas, N., Matrix algebra overO n , Michigan Math. J.26 (1979), 3-12 · Zbl 0412.46049
[35] [PSh] Pearcy C. and Shields, A., Almost commuting matrices, J. Funct. Anal.33 (1979), 332-338 · Zbl 0425.15003
[36] [P] Pedersen, G.K.,SAW *-algebras and coronaC *-algebras, contributions to noncommutative topology, J. Operator Theory15 (1986), 15-32 · Zbl 0597.46060
[37] [Ph] Phillips, N.C., Approximation by unitaries with finite spectrum in purely infinite simpleC *-algebras, J. Funct. Anal.120 (1994), 98-106 · Zbl 0814.46048
[38] [R1] R?rdam, M., On the structure of simpleC *-algebras tensored with a UHF-algebra, J. Funct. Anal.100 (1991), 1-17 · Zbl 0773.46028
[39] [R2] R?rdam M., Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math.440 (1993), 175-200 · Zbl 0783.46031
[40] [R3] R?rdam M., Classification of certain infinite simpleC *-algebras, J. Funct. Anal. (to appear)
[41] [V1] Voiculescu, D., Remarks on the singular extension in theC *-algebra of the Heisenberg group. J. Operator Theory5 (1981), 147-170 · Zbl 0476.22008
[42] [V2] Voiculescu, D., Asymptotically commuting finite rank unitaries without commuting approximants, Acta Sci. Math.451 (1983), 429-431 · Zbl 0538.47003
[43] [Zh1] Zhang, S., CertainC *-algebras with real rank zero and their corona and multiplier algebras, Part I, Pacific J. Math.155 (1992), 166-197
[44] [Zh2] Zhang, S., On the structure of projections and ideals of corona algebras, Canad. J. Math.61 (1989), 721-742 · Zbl 0668.46031
[45] [Zh3] Zhang, S.,K 1-groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc.325 (1991), 793-818 · Zbl 0673.46050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.