Moklyachuk, M. P.; Tatarinov, S. V. On a linear prediction problem for homogeneous random fields. (English. Russian original) Zbl 0835.60037 Theory Probab. Math. Stat. 47, 119-127 (1993); translation from Teor. Jmovirn. Mat. Stat. 47, 118-129 (1992). Summary: The problem considered is the optimal linear estimation of the transformation \[ {\mathbf A} \xi = \int^\infty_0 \int^\infty_0 a(t,s) \xi (t,s) dt ds \] of a homogeneous random field \(\xi (t,s)\) with spectral density \(f(\lambda, \mu)\) from observations of the field \(\xi (t,s)\) for \((t,s) \in {\mathbf R}^2 \backslash {\mathbf R}^2_+\). The least favorable spectral densities \(f^0 (\lambda, \mu) \in D\) and the minimax spectral characteristic of the optimal estimate of the transformation \({\mathbf A} \xi\) are found for various classes \(D\) of spectral densities. MSC: 60G25 Prediction theory (aspects of stochastic processes) 93E11 Filtering in stochastic control theory 62M20 Inference from stochastic processes and prediction 93E10 Estimation and detection in stochastic control theory Keywords:optimal linear estimation; spectral characteristic; spectral densities PDFBibTeX XMLCite \textit{M. P. Moklyachuk} and \textit{S. V. Tatarinov}, Theory Probab. Math. Stat. 47, 1 (1992; Zbl 0835.60037); translation from Teor. Jmovirn. Mat. Stat. 47, 118--129 (1992)