zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniform asymptotic expansions for oblate spheroidal functions. II: Negative separation parameter $\lambda$. (English) Zbl 0836.33012
The author reconsiders the oblate spheroidal functions satisfying the differential equation $$(z^2- 1) p''+ 2z p'- \biggl[\lambda+ {{\mu^2} \over {z^2- 1}}- \gamma^2 (z^2- 1) \biggr]p=0$$ for the case where $\lambda< 0$, $\mu\geq 0$, $\gamma= iu$ with $u>0$ and $|\arg z|\leq \pi/2$, and gives their asymptotic expansions for $u\to \infty$ while $\lambda/ u^2=\text{fixed}$. The expansions are uniformly valid in certain subdomains of the $z$-plane [Notice that the case $\lambda>0$ was already studied by the author himself, ibid. 121, No. 3/4, 303-320 (1992; Zbl 0781.33010)]. Explicit error bounds are given for all the approximations. Some asymptotic behaviour of spheroidal functions in terms of elementary functions of complex arguments are also derived. These latter are used to determine relationships between the parameters $\lambda$, $\mu$, $u$ and $\nu$ (the characteristic exponent).
33E15Other wave functions
34E20Asymptotic singular perturbations, turning point theory, WKB methods (ODE)
34M99Differential equations in the complex domain
Full Text: DOI