Guo, Yan; Strauss, Walter A. Nonlinear instability of double-humped equilibria. (English) Zbl 0836.35130 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 12, No. 3, 339-352 (1995). Summary: Consider a plasma described by the Vlasov-Poisson system in a cube \(Q\) with the specular boundary condition. We prove that an equilibrium \(\mu (v)\), which satisfies the Penrose linear instability condition and which decays like \(O (|v |^{-3})\), is nonlinearly unstable in the \(C^1\) norm with a weight function in \(v\). Cited in 47 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 76X05 Ionized gas flow in electromagnetic fields; plasmic flow Keywords:Vlasov-Poisson system; Penrose linear instability condition PDF BibTeX XML Cite \textit{Y. Guo} and \textit{W. A. Strauss}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 12, No. 3, 339--352 (1995; Zbl 0836.35130) Full Text: DOI Numdam EuDML References: [1] Batt, J.; Rein, G., Global classical solutions of the periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci. Paris, t. 313, Serie 1, 411-416 (1991) · Zbl 0741.35058 [2] Batt, J.; Rein, G., A rigorous stability result for the Vlasov-Poisson equation in three dimensions, Anal, di Mat. Pura ed Appl., Vol. 164, 133-154 (1993) · Zbl 0791.49030 [3] Gardner, C. S., Bound on the energy available from a plasma, Phys. Fluids, Vol. 6, 839-840 (1963) [4] Holm, D.; Marsden, J.; Ratiu, T.; Weinstein, A., Nonlinear stability of fluid and plasma equilibria, Phys. Rep., Vol. 123, 1-116 (1985) · Zbl 0717.76051 [5] Horst, E., On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. Appl Sci., Vol. 16, 75-85 (1993) · Zbl 0782.35079 [6] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry, part 2, J. Funct. Anal., Vol. 94, 2, 308-348 (1990) · Zbl 0711.58013 [8] Lions, P.; Perthame, B., Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Vol. 105, 415-430 (1991) · Zbl 0741.35061 [9] Marchioro, C.; Pulvirenti, M., A note on the nonlinear stability of a spatially symmetric Vlasov-Poisson flow, Math. Mech. in the Appl. Sci., Vol. 8, 284-288 (1986) · Zbl 0609.35008 [10] Penrose, O., Electrostatic instability of a uniform non-Maxwellian plasma, Phys. Fluids, Vol. 3, 258-265 (1960) · Zbl 0090.22801 [11] Pfaffelmoser, K., Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eqns., Vol. 92, 281-303 (1992) · Zbl 0810.35089 [12] Schaeffer, J., Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. P.D.E., Vol. 16, 1313-1335 (1991) · Zbl 0746.35050 [13] Shizuta, Y., On the classical solutions of the Boltzmann equation, Comm, Pure Appl. Math., Vol. 36, 705-754 (1983) · Zbl 0515.35002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.